
One of the most important and useful ideas in 2D
computer graphics is the fill. Simple in concept but

powerful in practice, filling is so basic a technique that
there’s a fill tool in just about every 2D drawing system
sold today. Probably one of the first important uses of
fills was to color in 2D cartoon characters, as shown in
Figure 1. But that’s just the tip of the fill iceberg. In this
column I’ll talk about some fill techniques that I’ve
cooked up over time to solve different jobs.

Before we get started, a little history will help set the
stage. It’s hard to know who wrote the first fill routine,
but it may have been Dick Shoup, who implemented a
fill technique for his Superpaint system in the mid 1970s.
The next big step was Alvy Ray Smith’s 24-bit flood fill
algorithm, which also included tint fill, discussed below.
Change came fast after that point, culminating in the
sophisticated filling tools we have today.

The no-frill fill
The most basic fill algorithm is the 8-neighbor fill. You

start it off by providing a starting pixel (called the seed)
and a fill color. The algorithm first looks at the color
under the seed—let’s call this the target color. The idea
is to spread out from the seed, finding all contiguous
pixels that share the target color, and rewriting them
with the fill color. The 8-neighbor fill recolors the seed
and then looks at the eight pixels that surround the seed,
as in Figure 2. Each pixel falls into one of three cate-
gories, depending on its color. If it’s the target color, I
call it a target pixel. If it’s already the fill color, I call it a
filled pixel. Every other pixel blocks the spread of the fill,
so I call it a blocking pixel.

Any time the 8-neighbor fill finds a target color pixel,
the algorithm recolors it and then examines its eight
neighbors. You can write a recursive program to imple-
ment this algorithm. In my opinion, it’s actually one of
the nicest examples of recursion in computer graphics.
The recursive algorithm is short, simple, and easy to pro-
gram. Unfortunately, it’s also very slow when compared
to other approaches.

The basic fill has a number of
important variations. The most
important is the tint fill. The algo-
rithm I just described replaces tar-
get pixels with the fill color, and
that’s fine if you’re filling in some-
thing with hard edges, as in Figures
3a and 3b. But take a look at Figure
3c, where the black lines have been
drawn with an antialiased stroke. If
we only fill pixels with the target
color, we get a little halo around the

Andrew
Glassner

0272-1716/01/$10.00 © 2001 IEEE

Fill ’Er Up! __

Andrew Glassner’s Notebook
http://www.glassner.com

78 January/February 2001

(a) (b) (c)

1 The classic
flood-fill algo-
rithm for car-
toon cels. (a) A
line drawing.
(b) The color
scheme indicat-
ed by dots. (c)
The result of
filling each
region.

(a) (b) (c)

(d) (e) (f)

2 A few steps in the 8-neighbor fill algorithm. (a) The
starting image. (b) The initial seed. (c) Changing the
color under the seed pixel, and identifying the eight
neighbors. (d) In this implementation, the algorithm
first tries to move to the southeast. It finds another
pixel of the same color as the original seed, so it recol-
ors that pixel and marks the new neighbors for later
examination. (e) To the southeast is a blocked pixel, so
the algorithm looks to the south and moves there. (f)
Moving southeast is now available again.

lines, which looks bad. What we really want is Figure
3d, where the fill algorithm knows that in this case black
is special, and that colors between the target color and
black should be replaced by a similarly tinted blend
between the fill color and black. A robust implementa-
tion will tint-fill as long as it’s changing pixels that get
blacker and blacker, but stops either when they get to
solid black (in the case of a thick line), or when they
start lightening up again (in the case of a thin line).

Fill farther
Not too long after the invention of the 8-neighbor fill

came the pattern fill. Rather than simply replacing the
target color with the seed color, why not replace it with
a piece of a repeating pattern, as in Figure 4? Suppose
you define a rectangular block of pixels as a source pat-
tern. Then nestle the lower left corner of the pattern rec-
tangle into the lower left corner of the image, and stamp
out new copies of the pattern to the right and above until
the image is covered. Of course, this is all conceptual.
But when you’re filling, rather than replacing a pixel
with the fill color, replace it with the color that would
have come from this rubber-stamped pattern.

Fill patterns can vary—the pattern can have its origin
anywhere, including the seed point. The replications of
the rectangle can include flipping it over at each edge
to improve continuity. And you don’t need to use a rec-
tangle. Any shape that can tile the plane will do the trick,
from triangles and squares to Escher’s chameleons.

A few patterns are algorithmic by nature, so it makes
sense to do them procedurally. The gradient fill is the
simplest of these. You begin by defining two points. The
system imagines drawing a line between them, and then
determines the fill color by finding a perpendicular line

back to the input and using a color interpolated from
the endpoints. Figure 5 shows the idea. Beyond the end-
points, people typically either clip (that is, everything
beyond one end of the line is the color at the end of the
line), or continue to interpolate (which can create some
pretty strange colors).

Other gradient fills include the radial gradient, where
two colors are interpolated in circles from the seed to
an outer radius, and the angle gradient, where the col-
ors change as though painted around a clock. These are
also illustrated in Figure 5. These are only simple exam-
ples, and it’s fun to cook up other procedural ways to
paint color within a fill, such as by using noise, clouds,
or checkerboards.

An important variation on all of these colored fills is
that you can use more than two colors. For example, in
the gradient fill you can define several different colors
along the length of the line, and the system will move
from one to the next as it fills, as shown in Figure 5d.

IEEE Computer Graphics and Applications 79

(a) (b)

(c) (d)

3 Flood fills. (a) The original region and the fill color.
(b) The result. (c) The result when the black lines have
been antialiased: only fully white pixels are filled. (d)
Tint fill blends into the black lines, respecting the
antialiasing.

4 A combination of tint fill and pattern fill.

5 Gradient fills. (a) Linear. (b) Circular. (c) Radial. (d) Multicolor.

(a) (b)

(c) (d)

Most 2D painting programs provide some tools for cre-
ating and applying gradient fills of different types that
involve several colors.

You can really cut loose with new kinds of things to
put into filled regions. For example, you could imagine
doing a z-buffer fill. Suppose you render a scene that
includes a ground plane going off into the distance. In
addition to the picture, you save the z-buffer. Now cre-
ate a little tile of a flower, point to the ground plane in
the image, and fill it with the flower using a z-buffer fill.
The algorithm uses the depth at each point to scale the
flower and adjust its colors to account for fog. The algo-
rithm could hop from pixel to pixel in the fill area ran-
domly. Each time it draws a flower, it uses the z-buffer
to determine visibility, and then it updates the z-buffer
to account for the new object. After a while you stop the
fill, and you’ve got a field of flowers.

Of course, at this point we’re starting to move from
pure fills to image-processing applications constrained
to a given region of the image plane. I like the fact that
these ideas blend so nicely from one to the next.

Fill disclosure
The job of the filling algorithm can be broken into two

pieces—determining the pixels to be affected and then
affecting them. These two steps can be repeated and
alternated. Since, as we just saw, the second phase can
get arbitrarily complex, let’s focus on some variations
on the job of identifying pixels to be processed.

In the following sections, I’m going to talk about a
variety of fill algorithms and run some of them simul-
taneously. Because the idea of running multiple fills in
parallel may seem a little strange, I’ll describe how I do
it. To run these experiments, I built a fill-algorithm play-
ground. The playground rules are these: each fill is
defined by a seed location, fill color, and fill type. Some
types of fills also have additional parameters, such as a
preferred direction or width. I read a text file that
describes the fills for that experiment, build an internal
list, and then run through the list over and over.

On each pass through the list, I take the first fill and
run it for one step. Typically the routine will determine
some pixels to fill, change the color of some or all of

them, and then return. Sometimes it also creates or
updates some internal state, such as a list of pixels
already filled or the size of an expanding region. When
that routine returns, I call the next one in line. When I
reach the end of the list I come around again, repeating
until none of the fills change any pixels.

This means that when there’s only one fill, it runs like
we’re used to. But when there’s more than one, the fills
effectively race against each other. Whoever gets to a
given pixel first gets to color it, and others subsequent-
ly see that new color. So I tend to write the routines in a
way that doesn’t look ahead much. Each time a fill runs,
it finds its pixels, modifies them, updates its internal
state, and returns. So although they never contradict
each other’s view of the pixel data, the fills take turns
and can get in each other’s way, which leads to some
interesting results.

8-neighbor fill
In a naive implementation, the 8-way neighbor fill I

previously described spreads out from the seed hap-
hazardly. Figure 6a shows an image we want to fill and
its starting seed. Figure 6b shows a typical example of
the process stopped in mid-action, after about 30,000
steps. Figure 6c shows this intermediate result in a color-
coded form, where the RGB color of each pixel is its
24-bit serial number in order of being filled in. The
important part to look at is the green channel—the
brighter the green, the higher the serial number.

In this naive implementation, the first direction to
be searched was the bottom right. You can see that the
program made a beeline to the southeast from the
seed, since at each point it checked the bottom right
first and made that the top priority for the next pass.
When it hit the picture’s edge, it started searching in
other directions.

I wondered about this motion and how it might inter-
act with itself during multiple fills. Figure 7a shows the
same starting image and three seeds. Figure 7b shows
the result after about 30,000 steps (as I mentioned
before, the fills take turns executing, one step at a time).
Notice that they all dived toward the lower right cor-
ner, and then as they spread out, interfered with each
other.

Why did the algorithm take 30,000 steps to fill in only
a few thousand pixels? Think about the fact that pixels
that get pushed onto the stack may not get examined
for a while. By the time a pixel pops, more often than
not the algorithm has already handled it. Like I said,
this is a naive implementation. Coming up with a more
efficient approach isn’t too difficult, so I’ll leave that to
you as an exercise.

80 January/February 2001

7 Running a
trio of 8-neigh-
bor fills. (a) The
seed points. (b)
The result after
30,000 steps. (a) (b)

Andrew Glassner’s Notebook

(a) (b) (c)

6 A test image for our filling algo-
rithms. (a) Two objects and a black
background. The yellow disk marks
the seed. (b) This 8-neighbor fill
starts by heading to the southeast.
The result after 30,000 steps.
(c) The steps color-coded by their
serial numbers. The pixels get
greener as the fill goes on.

Square visibility fill
Let’s try another fill geometry, motivated by a problem

I was trying to solve for a research project. I call it a vis-
ibility fill. Suppose you place a 2D lightbulb in the scene
and turn it on. It fills everything it can see. Anything of
a color other than the target color acts as a shadow.

We could do this by drawing expanding circles (and
I’ll get to that) but it’s even faster to draw expanding
squares. The end result is the same if you’re doing only
a single fill, but of course if two or more fills interact,
we’ll see the effect of the square geometry.

Figure 8 shows an example on our test image, as the
fill progresses from the seed.

Let’s see how to make an efficient implementation.
Before starting the fill I create a big ring around the
image and chop it up into little pieces. Each piece repre-
sents a small solid angle. If that piece holds a 1, then that
range of angles is visible from the seed; otherwise it’s
not. Figure 9 shows the idea. The ring starts out as all 1s.

Each time I enter the fill algorithm, I draw a square of
the current side length, which starts at 1—that’s why I
call this the square visibility fill. Figure 10a shows an
example. The first thing I do is start at one corner and
walk clockwise around the square, looking for shadow
casters—that is, pixels of any color other than the tar-
get color. For each shadow caster I find, I find its associ-
ated ring cell, and set it to 0, as in Figure 10b. To find the
appropriate cell on the ring, I conceptually draw a line
from the center of the seed through the center of the
blocker and extend that until it hits the ring.

Once I’ve gone all the way around looking for block-
ers, I start over again at the same corner and walk
around the ring a second time. Every pixel currently set
to the target color is a candidate for being filled in. To

determine if it should be filled, I check its visibility. Just
as for the blockers, I conceptually draw a line out to the
ring and check the status of the visibility cell, as in Figure
10b. If it’s a 1, then the pixel is visible, so I change the
pixel’s color to the new color; if it’s a 0 I skip it. Then I
move on to the next pixel around the square.

When I’ve finished going around the square for the
second time, I bump the radius by one (so the next time
around I’m looking at the next larger square), and return.

There are a few important “gotchas” to getting this to
work right. First, make sure that the ring has enough
cells—too many is better than too few. To compute the
appropriate number of cells, I add the width of the
image to its height and multiply by ten. Multiplying by
four would probably be enough, but since more is bet-
ter, overkill must be terrific.

Second, accurately mark all the blocked angles. Of
course I don’t actually draw the lines I talked about

IEEE Computer Graphics and Applications 81

8 Progress of the square visibility fill. In this time-lapse
series of images, we can see the square expanding. At
each step, it only fills in pixels that can be “seen” by the
seed.

9 The visibility ring is a data structure centered on the
seed point. A green cell indicates that pixels in that
direction are still visible as the fill expands; a red cell
indicates directions that cells are blocked. This shows
the final result after the fill is complete.

(a) (b)

10 The ring is broken up into many cells. (a) The square
of pixels currently being examined. (b) When a blocking
pixel is located, I conceptually draw a line from the
center of the seed through the center of the blocker to
determine which ring cell to mark as blocked.

above through pixel centers and out to the ring. The
“ring” itself is nothing but an array of 0s and 1s of the
size previously mentioned. To get the index into the ring
for a given pixel, I find the angle formed by the line from
the seed pixel to the blocker pixel by using the atan2
math library call. The atan2 function is great because it
takes the signs of x and y and resolves the correct quad-
rant for the angle. On my system, atan2 returns a value
from −πto π. So to get the right cell, I compute the angle,
add π, multiply by the number of cells, divide by 2π, and
round to the nearest integer.

But there’s a problem with this approach, shown in
Figure 11. When you’re near the seed, two adjacent pix-
els might map to ring entries far from one another.
That means that pixels in between these blockers
would be unmarked, erroneously identifying that
region as visible. Later pixels would be misidentified,
as shown in Figure 11b. It seems to me that the easiest
solution is to always look at pairs of pixels around the
square, rather than single pixels, and mark all the
angles between them.

Okay, no problem. I start at the corner and walk around
the square, looking for a blocking pixel. Suppose I find
one at index n. Then I check square entry n + 1. If entry
n + 1 is not a blocker, then I just turn off the visibility for
the cell corresponding to n, as in Figure 11a. But if n + 1
is also a blocker, I find the visibility cell for it, and turn off
all the visibility cells between the two, as in Figure 12.
Then I move to cell n +1, check it (and its neighbor, if nec-

essary), and so on around the square. Whew, I’m done!
Um, not quite. Remember that atan2 function? Figure

13 shows a problem. The first blocker has an angle θ1

only a bit smaller than −π, and the second θ2 is a little
less than +π. If the array has 80 entries, then these might
map to index entries i1 =1 and i2 =78, respectively. If we
always fill in visibility cells from the smaller angle to the
larger, which often is the right thing to do, then in this
case we’d go from 1 to 78, as in Figure 13b, which is
wrong. The correct answer is in Figure 13c, where I filled
in the entries 78-79 and then 0-1. What’s the general
rule for deciding between these cases? Let’s assume that
θ1 < θ2 . If you think about it a while, you’ll come to this
conclusion: if |θ2 − θ1| > π, then you want to mark as
blocked the two ranges [θ2, 2π] and [0, θ1]. Otherwise,
you want the range [θ1, θ2]. In terms of cells, if there are
R visibility cells, then

i1 = round(R(θ1 + π)/2π)
i2 = round(R(θ2 + π)/2π)
if (i2 - i1 < R/2)

then mark_range[i1, i2]

else {

mark_range[i2,R]

mark_range[0, i1]

}

That does the trick. Now our squares expand without
leaving behind any holes in the visibility ring.

Andrew Glassner’s Notebook

82 January/February 2001

(a) (b)

11 A failure mode when the ring elements are marked
on a per-pixel basis. (a) Three neighboring pixels clearly
block this whole region of visibility, but they don’t
project to continuous visibility cells. (b) A pixel that
should be marked as invisible gets misclassified as
visible because its cell has not been turned off.

(a) (b)

12 Solving the continuity problem. The pixels in heavy
outline are part of the square being processed for this
seed. (a) Process neighboring pairs of blocking pixels,
and fill in all the cells spanned by each pair. (b) Process
outward neighbors as well.

(a) (b) (c)

13 The
crossover prob-
lem. (a) A pair
of neighboring
pixels spans the
discontinuity in
the arctangent
function.
(b) If we fill in
span from the
low angle to the
high one, we go
around the
wrong way.
(c) The correct
solution.

It’s important to remember that we normally need to
check two pairs for each blocked pixel. One couples the
pixel with the next one around the square. The other
check links the square to its counterpart in the next larg-
er square. Corners of the square are special. They have
two neighbors in the current square and two more in the
next larger one. Figure 12 shows both of these cases.

What if we run a few square visibility fills simultane-
ously? Figure 14 shows the result. As you might guess,
the lines that join neighboring regions are all along 45-
degree increments.

Circular visibility fill
In the last section I faked the expanding ring of light

around the seed as an expanding square. Why not use a
real expanding circle?

The reason for using a square is that it’s easy to satis-
fy two criteria: we get to make sure we hit every pixel as
we move outward from the seed, and we don’t hit any
pixels twice. So we have completeness and efficiency.

Circles are a little trickier. Growing a set of nested cir-
cles that never share a pixel and never miss a pixel is
probably possible, but the squares were so much easier
that I did them first. Then I wondered what circles would
look like, so I threw caution to the wind, copied the
expanding-square code, and hacked it to do circles.

The hack works this way. I track the side length of the
expanding square, as before. I scan all the pixels inside
the square and compute their distance to the seed. If
that distance is less than or equal to the current radius—
but more than 90 percent of that radius—then I check
the pixel for filling. Obviously, this isn’t as efficient as
the expanding square for a variety of reasons.

Before I forget, though, I need to point out three
details.

First, I don’t really compute the distance—I compute
the squared distance. When I enter the routine for a
given side length of the square, I compute the squared
radius of the circle and the squared radius of the 90 per-
cent circle. Then I compare the squared radius of the
pixels to these distances. It saves me a square root at
every pixel.

Second, finding the two neighbors to handle spans of

angles is a little trickier. Because we’re scanning left to
right and top to bottom, the next pixel to be examined
may not be a good choice of neighbor. So I break up the
region around the seed into octants, as in Figure 15. In
the figure, I indicate the test that identifies which quad-
rant I’m in and then show which way to move to get the
neighbors.

Third, there’s no magical reason for picking the 90 per-
cent inner circle. I wanted something that would guar-
antee that as the circles moved outward, they overlapped
enough that I never missed a pixel. I thought 90 percent
was a good guess, and it’s worked fine in all my tests.

Figure 16 shows the circular versions of Figure 9.

IEEE Computer Graphics and Applications 83

14 Running three simultaneous box-visibility fills.
Notice that the fills interfere with each other and that
their boundaries are all on 45-degree lines.

1
2

3
45

6

7
8

(a) (b)

15 Finding neighbors for a given blocker during a circular visibility fill.
Given a seed pixel at the center of the graph at (sx,sy) and a blocker at
(bx,by), we compute dx = bx − sx and dy = by − sy. (a) The octant in which
the vector (dx, dy) lands finds its two neighbors in the directions shown.
(b) To determine the octant, compare dx and dy. The color codes break
down the eight choices into three tests. Dark green cells show where
dx > 0. Dark blue cells show where dy > 0. Dark red cells show where
|dx| > |dy|. Each of the eight choices in Figure 15a corresponds to one of the
eight values that characterize these three tests. The eight octants can be
simplified to four quadrants.

16 Progress of the circular visibility fill. Note that the
final result is the same as for the box.

Figure 17a shows the result of three simultaneous cir-
cular visibility fills. One interesting thing to observe is
that the lines between regions are now perpendicular
to the line between the respective seeds, and pass
through that line’s midpoint. In other words, running
this fill algorithm in parallel on all the seeds is a way to

compute the Voronoi diagram for those seeds. It’s accu-
rate to the pixel level but obviously no better than that.
Figure 17b shows a more complex example.

Line sweep fill
I call another useful fill algorithm the line sweep. The

idea is to pick a direction, which I’ll
call the primary direction. Starting
on the seed, looking forward along
the primary direction, search out for
pixels to your left and right. Find
and replace them as long as they’re
the target color. When you reach a
pixel that isn’t the target color, stop.
When both sides have been blocked,
set a distance counter to 1 and
return.

The next time we enter the fill
routine, we repeat the process, mov-
ing forward from the seed a distance
set by the distance counter before

Andrew Glassner’s Notebook

84 January/February 2001

18 Line sweep
fills. (a) A hori-
zontal fill.
(b) A vertical
fill. (c) Three
simultaneous
horizontal fills.
(d) Three simul-
taneous vertical
fills.

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

19 River fills.
(a) A horizontal
fill. (b) A vertical
fill. (c) Three
simultaneous
horizontal fills.
Note the inter-
ferences
between the
green and yel-
low fills past the
point where
they collide. In
the bottom part
of the image,
the green fill
gets under the
pink crescent
first, then the
purple fill, and
then the yellow
one. (d) Three
simultaneous
vertical fills.

(a) (b)

17 Running multiple simultaneous circular visibility fills. Note that the
boundaries between regions are perpendicular to the line joining the seeds
points. (a) Three fills. (b) Eight fills in a scene with a single orange blob.
The result is a pixel-accurate Voronoi diagram.

filling left and right. Then we spread out left and right,
filling target pixels as we go. In this way we extend the
fill to the edges of the image. Figure 18 shows an exam-
ple of the line sweep fill in operation.

River fill
There’s a nice little variation on the line sweep fill that

I thought of when writing the code. Suppose that dur-
ing a line sweep fill, when you hit a blocking pixel, you
don’t stop. Instead, you remember how many pixels
you’ve filled in so far, and you keep heading outward,
looking for more target pixels. Each time you find one,
you fill it and increment the count of changed pixels.
You only stop when you’ve run off the edge of the image
or you’ve changed a predetermined number of pixels on
that pass.

If you do this in a blank image, you’ll get a thick band.
But if while filling in the ribbon you hit an object, the fill
seems to split, with one or both pieces going around the
object in order to continue. For mild interruptions, it can
look like the ribbon is a river of water meandering
around rocks and other objects, so I call this a river fill.
Figure 19 shows some river fills in our test case images.

Wrapping up
I’ve shown what happens when two or more fills of the

same type are both executing on the same image. What
happens if you mix fill types? The results are usually dif-
ficult to predict. Figure 20 gives a couple of examples. I
don’t see any immediate applications for mixing fill types
in this way, but that doesn’t mean there aren’t any!

Before leaving this topic, I’d like to point out an inter-
esting theoretical connection between filling and cellu-
lar automata, or CA. The idea of CA is that every pixel in
the image is running its own independent little program,
which usually combines its internal state with the state
of its neighbors to compute a new internal state. The
most famous CA is probably the game of Life. You can
certainly imagine casting many fill algorithms in terms
of CA, and I was planning to write this column in just
those terms. But before I stated programming, I remem-
bered that Alvy Ray Smith, one of the inventors of the fill
technique, had also done early research in CA. I asked
him about this connection, and it turns out that his very
first fill algorithm (in about 1976) was written as a cel-
lular automata simulation. It was incredibly slow, so he
turned to scanline techniques and assembly language

for huge speedups. Computers are fast enough now that
I was able to use C++ for this column, but I too stayed
clear of a pure CA approach. I think it would be a lot of
fun to try out, though.

In this column I’ve focused on techniques for identi-
fying fill pixels. As I said at the start, what you do with
those pixels once you’ve found them is wide open. One
fun approach is to shuffle around the pixels them-
selves—for example, in the visibility fills, you could
rotate all the pixels around the square or circle by an
amount based on the distance from the seed, creating a
swirling drain effect.

Playing with fill patterns is easy once you’ve got a lit-
tle testbed in place. I found myself doodling little fill pat-
terns on restaurant napkins and sometimes seeing
possibilities in manhole covers, Venetian blinds, and
other objects in the everyday world. This is a ripe area
for exploration and playing. Have fun! ■

Acknowledgments
Thanks to Steven Drucker and Alvy Ray Smith for fill-

ing me in on the history of this topic.

Readers may contact Glassner by email at
andrew_glassner@yahoo.com.

IEEE Computer Graphics and Applications 85

20 A visual
cacophony of
eight mixed fills
of different,
randomly
assigned types.

