
Films and television share a unique language for visu-
al storytelling. One feature of this language lets us

move through space and time in ways that are impossi-
ble in real life. For example, in a stage play, there needs
to be some continuity of time and place: if a character is
in the kitchen at one moment, he or she can’t be behind
the wheel of a speeding car in the next moment. But this
kind of abrupt transition happens all the time in films.

The simplest and most familiar way to get from one
scene to another is via the cut. To create a cut, you can
literally take two pieces of film, cut them at frame bound-
aries, and tape them together. In a film projector, a new
frame is displayed every 1/24 of a second, so it takes no
longer than that to get from the kitchen to the car.

The cut belongs to a general class of transitions—visu-
al effects that form the boundary between different
scenes. Let’s say that we’re watching scene A and we
want to go to scene B. If the transition takes many
frames, then at each step along the transition we con-
ceptually take the appropriate frames from A and B and
combine them to create a new image.

The cut is the simplest transition. It takes zero frames
to execute and simply stops showing A and starts show-
ing B. Perhaps the next most familiar transition is the
dissolve (also called the cross-dissolve), where we
smoothly blend from A to B. To dissolve over several
frames, simply scale the appropriate frames from A and
B and adds them together. The scale factor on A goes
from 1 to 0 while the scale on B goes from 0 to 1.
Typically the dissolve eases along, so that it starts slow-
ly, runs faster, then finishes up slowly again.

A popular variation on the dissolve is the fade to black,
which is just a dissolve where the B scene is a black
frame.

Many video-editing programs ship with a collection of
ready-to-use transitions. In this column I’ll discuss the
field and then present some transitions that I cooked up.

Wipes
A general class of transitions is the wipe. A wipe is a

recipe for gradually revealing parts of B over time. In
many systems, when the wipe calls for a pixel of B to
replace the corresponding pixel of A, it doesn’t replace
it immediately, because a snap from one color to a
another would be distracting. Instead, the wipe triggers
a multiframe dissolve for that pixel.

Referring to the different frames to be used at each
moment in a transition makes for busy notation and lan-
guage. To keep things simple in the rest of this column,
I’ll use constant images for A and B: this would be equiv-
alent to a transition between still frames. In practice,
when creating a transition between motion sequences,
you’d pull the corresponding frames from A and B at each
moment and apply the changing transition to them.

The most common wipes are probably the simple geo-
metrics. Let’s look at a simple vertical wipe, as in Figure
1. The effect is as though frame A was simply pulled up,
revealing B underneath. An easy way to think about this
class of wipes is to imagine that a simple black-and-
white mask controls them.

Such a mask could be represented by a card painted
white and black. For each white pixel in the mask, we’ll

Andrew
Glassner

0272-1716/01/$10.00 © 2001 IEEE

A Change of Scene __________________________________

Andrew Glassner’s Notebook
http://www.glassner.com

86 May/June 2001

1 A simple vertical wipe.

use the corresponding pixel from frame A, while black
pixels direct us to pixels from frame B. To make a simple
vertical wipe, you paint the card white on the top and
black on the bottom and start with the top half occupy-
ing the entire frame. Then pull the card up, so that the
boundary moves upward, eventually leaving you with
a black image.

You can rotate the card into other orientations, so you
can wipe in any direction, as in Figure 2. You can also
change the boundary’s shape from a straight edge to
something curved, or diffuse it from such a sharp bound-
ary to a smoother one, as in Figure 3. In this case, shades
of gray represent interpolations of the corresponding
pixels from A to B, just like the texture masks used in 3D
modeling. In this approach, you might not need to trig-
ger a transition at each pixel, since the gray value itself
provides the smooth change from one image to the next.

Another fun trick is to change the scale of the mask
over time. This creates a class of effects called iris tran-
sitions. A famous iris transition is a circle that shrinks
smaller and smaller around the lead character, reveal-
ing a black B scene, as in Figure 4. This is also called an
iris out effect. People sometimes use the iris’ shape to
indicate something about the scene’s emotional content.
For example, it’s now a cliché to iris-out at the end of a
romantic movie with a heart shape around a pair of
newly joined lovers.

These masks can change color over time. Typically
this occurs by making the mask pixels strictly darker as
the transition proceeds. You could also lighten the pix-
els during the transition, so bits of A fade away and then
reappear. In this way, we can make A appear to “twin-
kle.” But generally, the transitions are strictly one way,
each pixel going from A to B. Any geometric pattern that
you can program can be used for a transition. Common
examples include Venetian blind effects, pinwheels, dia-
monds, checkerboards, page turns, spinning and grow-
ing iris shapes, and even irises that morph in shape from
the beginning of the transition to the end.

Distorted wipes
The next more general class of wipes involves distort-

ing images A and B as well as revealing them. For exam-
ple, let’s return to the vertical wipe in Figure 1. During
the transition, we’re basically splitting the screen into
two rectangles, with A on the top and B on the bottom.
We could vertically scale each image so that it fits into its
allotted rectangle. Figure 5 (next page) shows how this
would look. Of course, we can make the warps fit into
any shape, not just rectangles. For example, image B can
appear to bubble up from the bottom of the frame, it can
drop and expand like a raindrop, and so on.

Once we’re willing to distort the images, the genie is
out of the bottle and all kinds of things become possi-

IEEE Computer Graphics and Applications 87

2 A wipe at an angle. 3 (a) A wipe with an edge that isn’t straight. (b) The
edge need not be crisp.

(a) (b)

4 The iris-out transition.

ble. Most of them, unfortunately, aren’t useful in prac-
tice. Remember that the purpose of the transition is to
carry the viewer’s attention from one scene in the story
to the next. Except in special circumstances, if the view-
er is actively aware of the transition itself, then that tran-
sition at that time must be considered a failure. The
transition advances the story. There’s nothing worse for
a storyteller than to have the audience remove them-
selves from the narrative flow and start marveling at the
technique, because then you’ve lost their emotional con-
nection to the work. Cool transitions have their place,
but like any special effect, they must be carefully cho-
sen and used so that they match and support the story,
and never overwhelm it.

With that in mind, it’s worth noting that audiences are
remarkably adaptive. Consider the cut itself. There’s
nothing resembling a cut in daily experience. But we’ve
come to accept it, and modern audiences aren’t thrown
in the slightest when a film cuts from one scene to anoth-
er. Wipes are just as familiar and unobtrusive, but a lit-
tle less bizarre: a vertical wipe is like a relative of a rising
curtain, and a horizontal wipe is reminiscent of an open-
ing door revealing a room beyond. I can’t think of any-
thing outside a house of mirrors that physically
corresponds to the transition in Figure 5, but that does-
n’t mean it should be always avoided. For example, this
transition could be used to reinforce the story’s emotional
content if the characters in scene A are feeling trapped
and pressured and those in B are feeling a growing sense
of possibility and power. Then the visual images are har-
monious with the story itself. Of course, transitions can
(and should) be used in much more subtle ways. But the
point is always to ensure that the effect never interferes
with the story. If the effect can resonate with the story
or emphasize the emotional mood, so much the better.

One interesting version of distorted wipes is the class
of 3D effects. Suppose that we painted scene A on one
side of a box and scene B on an adjoining face. Then we
could rotate the box to create the transition. This is
something like the zoom-to-fit of Figure 5, but if there’s
perspective the effect can look unmistakably like a rotat-
ing box rather than two images being scaled. You could
implement this transition by texture mapping a cube
and spinning it, and some video editors do it just that
way. Others fake the effect using a variety of tricks,
including prerendered pixel-mapping tables.

Now that we’re in 3D, we can treat scene A as though
it was on a sheet of paper and cause it to flutter away,
revealing B beneath it. Or A and B could be on opposite
sides of a rotating cylinder. Anything you can do with
two texture maps in a 3D scene—so that you start with
A and end with B—is fair game for a transition.

Special dissolves
A special form of distorted dissolve is the morph. The

idea is to create a time-varying warp that takes frame A
into frame B. Typically people move the geometry of the
pixels of frame A around so that features in one picture
(such as eyes or arms) move to similar features in frame
B. While the pixels move from one place to the other,
they also change color, flowing from the color in image
A at the starting location to the color in image B in the
ending location.

Another special dissolve is the no-change dissolve.
Suppose that scene A ends with the hero hanging up her
telephone in her kitchen and scene B begins with the vil-
lian picking up her own phone in her living room. In film
production, we might want to emphasize the role the
phone plays in both character’s lives by tying together
the two scenes visually: we could make that last frame
of A match the first frame of B as carefully as possible.
That means we use a close-up of the same phone, the
same lighting, the same camera position, and so on. Of
course, the two phones are in different physical locations
and so the match is imperfect, creating a slight wobble in
the image as we dissolve from one phone to the other.
This is the no-change dissolve. One might think that com-
puter animation can improve on this transition by actu-
ally matching the two shots perfectly.

But wait! In fact, that slight wobble between scenes is
very important: it’s what alerts the audience that a tran-
sition has, in fact, occurred. Remember, the whole idea
is to make a story point about the characters and their
relationship to the telephones and not to trick the audi-
ence. If the two shots are really perfectly matched, then
the audience will certainly be confused. Think of the
sequence: a shot of the hero sadly placing the phone in
its cradle, a zoom into the phone, and then a zoom out of
the phone to reveal the villian’s home. What happened?
People will figure it out, but that moment of disorienta-
tion is rarely to the story’s advantage. The slight change
in the phone’s visual appearance that’s inevitable in film

Andrew Glassner’s Notebook

88 May/June 2001

5 A simple wipe where I warped each image to fit the available region.

is actually vital to keeping the audi-
ence engaged. In good animation,
no-change dissolves have a small
amount of change in them—just
enough to cue the audience that a
transition has occurred but that the
two scenes are very similar.

Color-driven transitions
I thought it would be interesting

to look at some transitions that are
based on the colors in the images
themselves rather than on some
additional geometry that was laid
over them or used for time-varying
distortions.

These transitions all use color
information to compute the image
and modulate the colors to blend
from one image to the next. Because
we’re adjusting the colors, it’s
important to work in an appropriate
color space.

Most of the time in graphics we save
our images in an RGB format. Let’s
assume that these are each floating-
point numbers between 0 and 255.
For specificity in the discussion, let’s
pick a bright green color C, given by
RGB (127, 255, 64), shown in Figure
6a. Now suppose that we want to
slowly move C to black. We could do
so by scaling each of the RGB values
over time. If α is a number that runs
from 1 to 0, we can just compute
C′ = (α 127, α 255, α 64).

Now suppose we want to make the color brighter. A
common way to estimate a color’s brightness is to take
its luminance. Constants for computing the luminance
vary a little bit depending on your specific hardware, but
a common formula is L(RGB) = .3R + .59G + .11B. The
luminance of C by this formula is about 195. Suppose
now we want to raise the luminance to 234. The obvious
way is to scale the components as before. The value that
does the trick is about α = 1.2, giving us C′ = (152, 306,
77). Uh-oh. Since our monitor can’t show any green
value above 255, we have to clamp the green component
from 306 to 255. Figure 6b shows the result. But the
luminance of the clamped color (152, 255, 77) is about
204, not 234. Our pixel is only about 5 percent brighter,
not the 20 percent we wanted. If we care about how
bright and dark our pixels are (and in a transition, that’s
very important) then we have to address this problem.

The obvious answer is to hold the green value fixed
at 255 and raise red and blue by equal percentages until
we get the desired luminance. In other words, we crank
up the three values, clamping the overflow, until L =234.
The result is (236, 255, 119), shown in Figure 6c.

But this repair has actually made things worse. As
Figure 6a shows, our clamped and scaled color has
moved from green to yellow. Because the green com-
ponent is less dominant in the clamped version, the new

color looks yellow. This color shifting is very noticeable.
Unless you’re going for a weird, color-distorted look,
such color shifts are unacceptable during a transition.

The cure is to work in a different color space. We
have a number of choices from which to choose. One
nice compromise in terms of efficiency and perfor-
mance is the hue, saturation, brightness (HSB) space.
The relatively simple technique for converting between
RGB and HSB is available in almost every graphics text-
book, and you can even get implementations freely on
the Web.

In HSB, our original color C = HSB(100, 75, 100). To
make our color brighter, we only need to decrease the
saturation; this has the effect of pushing the color toward
white while retaining its hue. Note that for simplicity, I
cooked the example so that the brightness is already at
a maximum. In practice, you’d want to address both
brightness and saturation while adjusting the color. To
get to a luminance of 255, we decrease the saturation to
26. To get the equivalent RGB values, we run the con-
version the other way: HSB(100, 26, 100) = RGB(211,
255, 189). This color also has the desired luminance of
234, but as Figure 6d shows, it’s a very light green rather
than yellow. This is a much better result.

So if we’d just scaled up our original RGB color to make
it brighter, it would have indeed become brighter, but it
would have changed hue to a yellow. Working in HSB

IEEE Computer Graphics and Applications 89

6 (a) Our initial green color (127, 255, 64). (b) The clamped version of the
brightened color (152, 255, 77). (c) The original color scaled and clamped to
get the desired luminance: (236, 255, 119). (d) The original color adjusted in
the hue, saturation, brightness (HSB) space, with RGB = (211,255,189). This
has the same luminance as (c) but hasn’t shifted in hue. The background is
gray with our desired luminance: (234, 234, 234).

(a) (b)

(c) (d)

solved the problem and kept the color green while mak-
ing it lighter. We could have achieved similar results using
other popular color spaces such as hue saturation value
(HSV) or hue lightness saturation (HLS). The perceptu-
ally uniform L*a*b* space is probably the best for this
kind of work, but it’s much more expensive to compute.

Luminance planes
Let’s look at three transitions based on the brightness

of the two images. The first one is pretty simple. Think
of the luminance of image A as a height field, as shown
in Figure 7a . Create a plane parallel to the base and set
it just above the highest point of A. Now push the plane
downwards, as in Figure 7b. Each time a pixel of A gets
sliced off by the plane, start its transition to the color in
B. Figure 8 shows images from the transition that results
if you just replace each cut-off pixel in A by its counter-
part in B. In practice, I transform these colors smoothly
by kicking off a linear blend when the pixel is first sliced.
I also pass the blend through the ease curve that I pre-
sented in the last issue (March/April) to make the tran-
sition look nice and smooth.

This technique has lots of variations. One is to take
inspiration from the iris effects and use a shape other
than a plane to cut the height field. A hemisphere, a star,
a cone, and other shapes would each have their own
look. If you use one of these other shapes, you can try
rotating and scaling it or even changing its shape entire-
ly as it moves downward.

Black bounce
In a typical fade-to-black transition, we darken all the

A pixels until they become black and then crank them
all back up again until they reach their B values. In other
words, the whole image goes uniformly dark and then
bright again.

Notice that in general, each pixel in the image is fad-
ing down (and then up) at the same relative rate but at
different absolute rates. For example, if a transition
takes five frames to go from A to black, then five frames
to get to B, then each pixel will lose (or gain) 10 per-
cent of the total distance it has to travel at each step.
For simplicity in this discussion, let’s suppose our pix-
els are gray (so R = G = B). Now consider a gray pixel
that begins with a value of 50 at A and ends with a value
of 150 at B, for a total of 200 units (50 to 0, and then 0
to 150). The pixel will change by 200/10 = 20 units at
each step. But a brighter gray pixel with starting and
ending values of 200 will cover 400 units, so it will
change by 400/10 = 40 at each step. So they have the
same relative speeds (10 percent per step) but differ-
ent absolute speeds.

What if we turn this around and give each pixel the
same absolute speed? Consider some particular pixel P,
with starting and ending gray values PA and PB. We need
to get from PA to 0 and then up to PB over the course of
the transition. Suppose that the transition takes a total
of 10 frames. This pixel will need to change by
(PB + PA)/10 at each step.

Each pixel will have a different range PB + PA. Let’s
search the images and find the pixel Q with the biggest
total distance to travel. This distance tells us to adjust
the gray value of Q by Q∆ = (QB + QA)/10 at each step
(first by subtracting that amount from QA, until we get
to black, and then adding it back in, until we get back
up to QB). Now let’s apply that same transition rate to
every pixel, regardless of where it starts. So for some
general pixel P, we start at PA, subtract Q∆ at every step
until we get to black, and then add in Q∆ until we’ve
made it up to PB. Because Q has the largest distance to
travel, all the other pixels will reach their goals sooner
(or certainly no later) than Q.

Figure 9 shows this transition. I used the HSB space to
adjust the apparent intensity of each pixel so that it starts
out at its initial color, fades to black, and then comes
back up to the final color.

This transition has a silky, smooth look to it.
Sometimes it almost looks as though the image is being
inverted, like a piece of color negative film. I think that’s
because of the different rates involved in changing
bright and dark regions. For example, regions that are
dark in A but bright in B become bright very quickly,
while pixels that are bright in both need time to catch
up—this delay is part of what gives the effect its look.

Andrew Glassner’s Notebook

90 May/June 2001

7 (a) A height
plot for the
luminance of
image A.
(b) A slicing
plane moving
from the high-
est peaks to the
valleys. All
pixels above the
plane are
replaced with B
pixels. (c) The
plane a bit
further down.

(a)

(b)

(c)

Moving mountains
Returning to our interpretation of pixel intensities as

height fields, what if we include the height fields for both
A and B in our transition?

Figure 10 shows the basic idea. We place B under A,
so that the highest point of B lies just below the lowest
point of A. Now we start moving B upward, as in Figure
10b. Anytime a pixel of B pokes itself above that of A, we

start that pixel on its transition from A to B.
Figure 11 shows a transition created by this approach.

It has a nice organic feel to it. I think this is because the
technique seems to thrive on contrast: when B is bright and
A is dark, B will poke through early. Often, the bright parts
of an image are the important ones, so we get to see the
most important parts of B showing through the least impor-
tant parts of A and then gradually B develops from there.

IEEE Computer Graphics and Applications 91

8 A transition using the technique of Figure 7.

9 A transition using constant speed for each pixel change.

10 (a) The start of the transition, showing the height plot for A (orange) above that for B (purple). (b) B moves up. Anywhere that B
rises above A the corresponding pixels are turned to B. (c) B moving farther up. (d) The end of the transition, with B above A.

(a) (b) (c) (d)

11 A transition using the technique of Figure 10.

Once this is up and running, we can explore many
variations. As in the previous examples, we can trans-
late, rotate, and scale the height field for B as it moves.
In fact, it could translate in from the side, rising up from
below while wiping. This creates an interesting ripple
effect in A. Note that any motion of the height field for
B need not have any correlation to any motion of image
B itself with respect to A.

Summing up
There are a million interesting transitions for us to

discover. I found that it’s a lot of fun to cook up transi-
tions and implement them. I tried a couple of dozen over
the course of writing this column. The last three I
explained here are the ones that actually passed
muster—the others were visually interesting, but I did-
n’t think that anyone would ever use them in practice.

Of course, the images that illustrate these transitions
can only suggest the feeling. Because most of the effect
depends on the motion and the nature in which the pic-
tures change, a real feel for these transitions can only
come after seeing them in action. (See the “Web Extras”
sidebar for information on where you can view short
motion clips of these three transitions.)

Inventing transitions is like inventing filters for image-
processing programs. It’s easy to dream up possibilities,
but often it’s a case of a solution without a problem. As
I mentioned earlier, if a transition is too flashy or too
cool, then it threatens to interrupt the audience’s atten-
tion from the story. Unless the transitions themselves
are part of the story, oddball transitions should be used
sparingly, like unusual spices in traditional dishes. The
story is the reason for making the film—the job of the
transition is to help tell it. ■

Readers may contact Glassner by email at
andrew_glassner@yahoo.com.

Andrew Glassner’s Notebook

92 May/June 2001

Web Extras
To view animations of Figures 8, 9, and 11, visit

CG&A’s Web site at http://computer.org/cga/
cg2001/g3toc.htm and click on the following
links:

■ Animation of Figure 8: A transition that
results if you replace each cut-off pixel in
scene A by its counterpart in scene B. See
http://computer.org/cga/cg2001/extras/
g3086x1.avi.

■ Animation of Figure 9: A transition using
constant speed for each pixel change. See
http://computer.org/cga/cg2001/extras/
g3086x2.avi.

■ Animation of Figure 11: With scene B
underneath scene A, this transition moves
the luminance of scene B upward. See http://
computer.org/cga/cg2001/extras/g3086x3.
avi.

International Workshop on Volume Graphics
Stony Brook, New York, USA
21-22 June 2001
The program committee of the workshop is seeking research papers and proposals
for panel discussions concering all aspects of volume graphics. Visit
http://www.cs.sunysb.edu/~vg01 or write to vg01@cs.sunysb.edu for more
information.

Graphics Hardware
Los Angeles, California, USA
12-13 August 2001
This workshop is an inclusive forum for the entire graphics hardware community
and brings together researchers, engineers, and architects. This year’s workshop
will be held in conjunction with Siggraph 2001. Visit http://www.graphicshardware.
org or email info@graphicshardware.org for more information.

Coming SoonComing Soon

