
The computers we use today are engineering and
technical marvels. They employ powerful mathe-

matical abstractions about information and computa-
tion to create virtual machines that can do everything
from simulating a thunderstorm to engaging you in
real-time battle with a fire-breathing dragon.

But for all their power, today’s computers can only do
one thing at a time. Sure, we can put two computers side
by side and carry out out parallel computing, but to have
N streams of parallel computation, we need to have N
computers. And parallel computing is hard to do effi-
ciently: if we double the number of processors, the speed
of computation goes up, but very rarely by a factor of 2.
These are the realities of classical computing.

There’s a whole new approach on the horizon, called
quantum computing. The idea is to harness some of the
strange properties from the world of quantum physics
to build a new breed of computers. The scientific and
engineering challenges to building a real quantum com-
puter are formidable. But tiny, 3-bit quantum comput-
ers have been built and they prove that the theory works.

In the last issue, I introduced some of the ideas of
quantum computing. Here I’ll begin with a quick recap
of those ideas, and then dig into the notation and ter-
minology. In the next issue we’ll see some tools and algo-
rithms central to quantum computing.

You’ll probably find the notation here a little unusu-
al, but basically all we’ll be doing is manipulating vectors
and matrices. I’ll use physics language and symbology
here because it’s the language of quantum computing.

A quick review
As a quick refresher, let’s look at the characteristics of

the quantum world I discussed last time. Then I’ll quick-
ly review some linear algebra, because we’ll be talking
about familiar ideas with unfamiliar notation.

In the following, electrons and photons are typical
examples of quantum particles:

� A quantum particle can exist simultaneously in many
incompatible configurations, or states. We call this
superposition.

� We can operate on a quantum particle while it’s in a
superimposed state and affect all the states at once.

� When we observe a quantum particle, the very act of
observation causes the particle to take on one and
only one state. If we repeat the same observation

before otherwise affecting the particle, we’ll see the
same state.

� The particle and the measuring apparatus determine
the possible states that result from a measurement.

As we saw last time, quantum mechanics often con-
tradicts our intuition. After all, how can a particle exist
simultaneously in several incompatible states? What
could that possibly mean? Nothing in our everyday
experience works like that—a bird is flying or it isn’t, a
tree is alive or dead, and a bit is one or zero. Certainly
a tree can be thriving or dying, but it can’t be alive and
dead simulaneously. But in the quantum realm it’s a
different story, and that opens the door to quantum
computing.

Linear mathematics describes quantum mechanics.
That means that linear algebra is our friend when talk-
ing about this field. Central to linear algebra is the idea
of complex numbers. If you’re familiar with these, you
might want to skim the next paragraph, but slow down for
the next section so you can pick up the bra-ket notation.

Briefly, a complex number is a two-part assembly con-
structed by taking two real numbers, multiplying one of
them by the square root of −1, and then adding them
together. A complex number z is written as z = a + bi,
where a and b are real numbers, and i=√−1 (mathe-
maticians often use the letter i for the square root of neg-
ative one, while physicists often use the letter j). We can
think of z as a vector in a 2D coordinate system that begins
at (0,0) and ends at (a,b). The magnitude of z, written
|z|, is the length of this vector: |z|=√ a2+b2. Finally, the
complex conjugate of z, written z (or sometimes z*), is
simply the reflection of z around the X axis:z=a−bi. If a
complex number has no imaginary component (such as
z = a + 0i), we say that z is a pure real. Similarly, if there’s
no real component (such as z = 0 + bi), we say z is a pure
imaginary. If z = 0 + 0i, we simply write z = 0 and call
it zero. If z is a pure real, then the complex conjugate is just
z itself: z=z. Note that conjugation doesn’t change the
length of a complex number: |z|=|z|. If z has a length
of 1, we say it’s normalized, or is a unit vector. For more
information on complex numbers, see my column in the
January–February 1999 issue.

Bra-ket notation
In computer graphics we generally use a straightfor-

ward notation for vectors. A list of numbers in square

Andrew
Glassner

Quantum Computing, Part 2 ________________________

Andrew Glassner’s Notebook
http://www.glassner.com

86 September/October 2001

brackets (or sometimes parentheses), like [a b c] is a row
vector of three elements. To represent a column vector,
we simply transpose a row vector by rotating it 90
degrees. We indicate that with a superscript T—thus
[abc]T is a column vector. Physicists use a slightly dif-
ferent notation due to P.A.M. Dirac, called the bra-ket
notation. A ket is a column vector, and it’s written |abc〉.
A bra is a column vector, written 〈abc|, but we create it
by forming the complex conjugate of the listed elements.
So in tableau form

Note that 〈 and 〉 are not less-than and greater-than
signs; they’re taller and skinnier. If we want to form the
traditional dot product (or inner product), we just stick
these two guys together: 〈abc||def〉=〈abc|def〉=

ad+be+c f. Note that we only need to use one vertical
bar when we form this type of expression. When all the
entries are purely real this is the familiar dot product we
use during shading and other graphics calculations.

If we put a bra and a ket together in the other order,
we create a matrix (also called the outer product):

Qubits
The fundamental element of classical computing is

the bit. It’s an abstract quantity that can be in one of two
states: 0 and 1. I say it’s abstract because in theoretical
discussions we don’t care about the details of how bits
are implemented in different hardware: a bit could be
a magnetic core on a pair of wires, a trapped quantity of
electrical charge, or even a mousetrap (which can be
sprung or unsprung). Similarly, in quantum computing
the fundamental unit of computation is the qubit (pro-
nounced q-bit). The qubit also has two basic states, but
they’re a little different than the classical states.

A quantum state is represented by a ket (recall that
it’s a column vector of complex numbers). By conven-
tion, the two basic states are called |0〉 and |1〉, and cor-
respond to the X and Y axes:

Figure 1 illustrates these states. These two states are
called the standard basis. Note that in both of the stan-
dard bases, both numbers are purely real. These vectors
are perpendicular, or orthogonal: 〈0|1〉 = 0.

In my last column, we saw that a quantum particle
can be in more than one state simultaneously. We say
that multiple states can exist in superposition in a single
qubit. To capture this idea, we write a qubit q in a super-
position as the sum of two or more different states, each
scaled by a different amount.

The quantum basis vectors behave just like the bases
we’re used to in linear algebra. In the 2D plane, we usu-
ally use the basis vectors x = [1 0] and y = [0 1]. Then
any vector v = (a, b) can be written as a combination of
the bases: v = ax + by. Similarly, a qubit in superposi-
tion is written as a combination of the two basis vectors:
q=a|0〉+b|1〉.

As we’ve just seen, the notation for a superimposed
state uses the standard addition sign +. When we see
an expression like 3 + 5, we often mentally discard the
two elements and just think about their sum, 8.
Similarly, when working with the vector v above, we
usually forget about the bases x and y, and just think of
v as (a, b).

Although we use the addition sign in quantum com-
puting notation just as it’s used in linear algebra, I find
it’s useful to keep the component states distinct in my
mind. I think of + used in this case like playing two
songs on my stereo simultaneously. The result is a mix
of the two songs, but I can mentally tune in to either one
as easily as I can focus on the composite—the two songs
are distinct but coexisting.

Using the standard basis introduced above, we write
a superimposed state as q=c0|0〉+c1|1〉, where c0 and
c1 are complex and scaled so that |c0|2+ |c1|2 = 1. The
latter condition keeps the magnitude of q normalized,
which is important when carrying out calculations on
actual hardware.

The measurement postulate of quantum mechanics
says that when we measure (or observe) a superimposed
qubit q, it will instantly snap (or collapse or be project-
ed) into one of the states allowed by the measurement.
We typically measure qubits by evaluating them with
respect to the standard basis, so we’ll find a qubit in
either state |0〉 or |1〉.

When we observe a superimposed qubit, which state
do we see? The answer is probabilistic and depends on
the square of the weights on the different states. So for
our qubit above, our measurement has a probability of
|c0|2 of being found in state |0〉, and a probability of
|c1|2 of state |1〉.

Just as there are many ways to represent a classical
bit, we can make physical qubits with a variety of phys-
ical implementations. In the last issue we saw how pho-
tons passing through a sheet of polarizing material
become polarized either parallel or perpendicular to the
material’s polarization direction. We could say these two
directions correspond to the |0〉 and |1〉 states, so polar-
ized photons are one realization of qubits. Another
implementation example is based on a property of elec-

0

1
0

1
0
1

=

=

,

def abc

a b c
d da db dc
e ea eb ec
f fa fb fc

da db dc
ea eb ec
fa fb fc

 → →

abc

a

b

c

abc a b c=

= [],

IEEE Computer Graphics and Applications 87

(b)(a)

1 Visual inter-
pretation of the
quantum bases.
(a) State |0〉
corresponds to
(1,0). (b) State
|1〉 corresponds
to (0,1).

trons called spin (despite the colorful name, don’t think
of electrons literally as little spinning balls). Spin comes
in only two flavors: up and down. So it’s natural to asso-
ciate those spin directions with qubit states. These (and
other) particle properties bridge the gap between theo-
ry and practice: polarization and spin are real, physical
phenomena we can measure.

Remember in the following sections that when you
see an expression like q=c0|0〉+c1|1〉, we’re referring
to a superimposed quantum particle q that is simulta-
neously in two distinct states, |0〉 and |1〉. Only when
we finally measure it will the particle snap into a single
state. The probability of seeing each of the states is the
corresponding weight’s square.

Multibit registers
There’s not much you can do with a single classical

bit. Typically we pack up bits together into larger units,
such as bytes and words. In general, we often speak of
a register, which is a sequence of bits of any length.

To create a register on any kind of computer, we need
some kind of mathematical glue to stick the bits togeth-
er. The simplest glue is called the Cartesian product,
represented by the multiplication sign ×. For our pur-
poses, this simply takes two elements and abuts them
side by side.

We build up a register on a traditional computer using
the Cartesian product. If we have three bits, b0, b1, and
b2, then we can create a 3-bit register R = b0 × b1 × b2.
Figure 2 shows the idea. Note here that we aren’t mul-
tiplying together the bits in the numerical sense—we’re
gluing them side-by-side.

Because R consists of three bits, to specify the state of
R we need only identify the state of each of its three com-
ponents. In other words, three numbers completely
identify the state of R: the values of its three bits.

To be more general, suppose we have a system
described by three 2D variables. For example, we could
describe a song with three pairs of values: (tempo, vol-
ume), (style, orchestration), and (date-composed, date-
recorded).

More abstractly, let’s denote the first pair of axes as
U = {u0, u1}, the second as V = {v0, v1}, and the third as
W = {w0, w1}. To describe a song, we paste these three
2D systems together. The first two go together like this:

U × V = {u0, u1} × {v0, v1} = {u0, u1, v0, v1}

All three give us:

U × V × W = {u0, u1} × {v0, v1} × {w0, w1}
= {u0, u1, v0, v1, w0, w1}

In other words, we describe the complete system by spec-
ifying six numbers. In general, if we have two spaces X
and Y with dimensions dim(X) and dim(Y), then the num-
ber of dimensions in the Cartesian product is their sum:

dim(X × Y) = dim(X) + dim(Y)

In quantum computing, things get a little more inter-
esting. The big difference comes about because we need
to account for superposition. In the quantum world, we
put qubits together with a more complex glue called the
tensor product, written ⊗. A convenient way to think
about the tensor product of two items is that it’s a little
machine that unpacks its arguments into their compo-
nents, and then creates all the combinations that result,
in the order in which they’re named.

For a first example, let’s look at just two of the musi-
cal axes we encountered earlier. The tensor product
U ⊗ V breaks these spaces apart and puts them back
together again:

U ⊗ V = {u0, u1} ⊗ {v0, v1}
= {(u0,v0),(u0,v1),(u1,v0),(u1,v1)}

Note that we have four elements—the same number as
from the Cartesian product. But this time we have four
pairs, one for each combination of the source elements.

If we carry this operation out on all three spaces, we
get

U ⊗ V ⊗ W = {u0, u1} ⊗ {v0, v1} ⊗ {w0, w1}
= {(u0, v0, w0), (u0, v0, w1), (u0, v1, w0),

(u0, v1, w1), (u1, v0, w0), (u1, v0, w1),
(u1, v1, w0), (u1, v1, w1)}

Now we see the big difference between the Cartesian
product and the tensor product. The Cartesian product
gave us six elements, while the tensor product gave us
eight, one for each combination of the underlying inputs.
The number of elements in the tensor product is the
product of the number of elements in each of the spaces:

dim(X ⊗ Y) = dim(X) × dim(Y)

where here the × is for multiplication. The important
thing to remember about the tensor product is that it
doesn’t just glue together its arguments. Rather, it
breaks each one down one step (if possible), and then
glues together all the combinations that result. The
order of the elements in those combinations is the same
as the order in which they’re named.

The Cartesian example we saw for three 2D systems
basically creates a new 6D space. To describe a point in
this space, we need six numbers, one for each element
in the product. We scale together the elements in the
Cartesian product by the associated weight, and then
sum the results together.

Using the tensor product, we need eight numbers. We
identify the points in this space by weighting and then
summing the eight elements in the tensor product
forms, each element of which represents a particular
combination of the input states. So in the tensor prod-

Andrew Glassner’s Notebook

88 September/October 2001

b0 b1 b2 b0 b1 b2

(a) (b)

2 Assembling registers. (a) Three separate classical
bits. (b) A 3-bit register created with the Cartesian
product.

uct, we can’t adjust the input elements individually, as
in the Cartesian product—we can only scale together
composite states. It’s as though the elements are rebun-
dled into sealed packages, and we can only scale how
much of each package is in the final state. Figure 3 shows
this idea graphically.

Let’s look at another example, involving two matri-
ces, A and B:

Here’s the tensor product A ⊗ B:

Compare this to B ⊗ A:

Clearly the order of the operation matters: A ⊗ B ≠ B ⊗ A.
We often speak of preparing a qubit, meaning that we

put it into a desired state. We can use prepared qubits
to create prepared registers. Suppose that we make
some qubits that aren’t superimposed; that is, some are
completely in state |0〉 and others are completely in state
|1〉. Then, as in classical computing, we can build mul-
tiqubit registers by simply gluing them together. We use
the tensor product, of course, but it doesn’t do anything
fancy for us in this situation because the qubits have no
internal composite structure to break down.

For example, if we wanted to represent the decimal
number 6 in binary, we’d set up a 3-bit register to read
110. Using qubits, we write this as

So |110〉 and |6〉 are both just notational shorthand
for the tensor product of three qubits prepared in these
particular states and glued together in this particular
order.

By the way, sometimes there’s confusion about the
base of a register. A register described as |10〉 can mean
the 2-bit register |1〉⊗|0〉, or the 4-bit register repre-
senting the value ten: |1〉⊗|0〉⊗|1〉⊗|0〉. We can dis-
ambiguate these cases either from context or with a
subscript: |10〉2≠|10〉10.

Quantum registers get more interesting when they
contain one or more qubits that aren’t in a pure state.
Suppose that we have two qubits,

and

To form a register r from their tensor product, we write

Before we measure r, it’s simultaneously represent-
ing |10〉 and |11〉, with equal probability. As we’ve seen,
it doesn’t actually project into one state or the other until
we look at it.

Entanglement
When we combine states using superposition, some-

thing interesting occurs: we sometimes implicitly mea-
sure other bits in the register, even if we don’t look at
them. Let’s see how this works.

First we’ll look at a case where nothing terribly
strange happens. I’ll take two 2-bit registers a0 = |01〉
and a1 = |11〉 and build a single superimposed state
α=w|01〉+w|11〉 where each of the two states has
equal weight w (as we’ve seen, normalization requires
that w2+ w2 = 1, so w = 1/√2).

Since the two states have equal weight (and thus
equal probabilities), when we observe a quantum reg-
ister in this superimposed state we will find, upon obser-
vation, that it appears in one state or the other with
equal probability. So if we were to look at thousands of
systems created in state α, we’d find roughly half of them
in state |01〉 and half in |11〉.

Suppose we had a way to measure just the second
qubit of α and leave the first bit unobserved. Looking

r q q= ⊗ = ⊗ +() = +()0 1 1

1

2
0 1

1

2
10 11

q1

1

2
0 1= (+)

q0 1 =

1 1 0 110 6⊗ ⊗ = =

B A
A

A
⊗ =

=

=

5
6

5
1 2
3 4

6
1 2
3 4

5 10
15 20

6 12
18 24

A B
B B

B B
⊗ =

=

=

1 2
3 4

1
5
6

2
5
6

3
5
6

4
5
6

5 10
6 12

15 20
18 24

A B=

=

1 2
3 4

5
6

IEEE Computer Graphics and Applications 89

Σ

(a)

(b)

U0

U0 V0 W0 U0 V1 W0 U1 V0 W0 U1 V1 W0

U0 V0 W1 U0 V1 W1 U1 V0 W1 U1 V1 W1

U1 V0 V1 W0 W1
3 (a) The
Cartesian prod-
uct of three 2D
spaces. We can
weight each of
the six values
independently
(u0, u1, v0, v1, w0,
w1). The result is
a six-element
vector. (b) The
tensor product
of the same
spaces. We can
weight each of
the eight combi-
nations inde-
pendently. In a
quantum regis-
ter, the eight
combinations
reside simulta-
neously in a
single 3-qubit
register.

at the states a0 and a1 that make up α, we can see that
the second qubit of both states is |1〉. If we measure the
second qubit of α, then the probability that it will be in
state |1〉 is 1.

What does this tell us about the first qubit of α?
Nothing. Because the two qubits are unrelated, mea-
suring the second one reveals nothing about the first.

Suppose that instead we measure just the first qubit.
Looking at α, we can see that the first qubit is in an equal
superposition of |0〉 and |1〉. So half the time the first
qubit will come up in state |0〉, and the other half in |1〉.
The second qubit, of course, will always be |1〉.

Now let’s look at a more interesting case. I’ll start with
two new states b0 = |00〉 and b1 = |11〉 and build a new
superimposed state β = w|00〉+w|11〉.

Suppose now we measure the second qubit of β.
Because the states b0 and b1 are mixed with equal
weights, roughly half the time the second qubit of β will
come up in state |0〉, and half the time in state |1〉.

Suppose we observe that the second qubit is in state
|0〉. What does this tell us about the first qubit of β?
Everything! We now know the state of this first qubit
with complete certainty: it’s also |0〉. That’s because
the superposition that created β is made up of the
complete states b0 and b1. Since only b0 has a second
qubit in state |0〉, then the entire register β must be in
state b0.

If the second qubit had come up in state |1〉, then we
would again be completely certain that the entire reg-
ister was in state b1 and thus the first qubit was in state
|1〉 as well.

The same thing holds true if we measure the first
qubit. Because of the states’ structure that make up β,
measuring either qubit completely determines the state
of the other. In effect, measuring one of the qubits caus-
es the other qubit to be implicitly observed. This unob-
served qubit is immediately projected even though we
haven’t looked at it.

We say that the two qubits of register β are entangled.
Entanglement is a curious property that we never see

in the everyday world. But it’s a key ingredient to many
important applications, so let’s look at it a little more
closely and try to get a better handle on it.

The key to entanglement is that the two qubits have
some kind of unseen bond. Is it possible to break this
bond? If we could write two entangled qubits as a sum
of unentangled qubits, then we could avoid entangle-
ment. Let’s try to do this by hypothesizing that β could
be created by gluing together two independent qubits,
each one in an equally superimposed state. We can write
this as

If we could find values for p0, p1, q0, and q1 that satisfy
this expression for β, then we could find a way to tease
apart the qubits of β and avoid the implicit measurement
created by entanglement. So let’s expand out the tensor
product and see if we can find such values:

By definition β doesn’t contain state |01〉 or |10〉, so
p0q1 = p1q0 = 0. The first term, p0q1 = 0, tells us that either
p0 = 0 or q1 = 0. But p0 can’t be 0, because then p0p1 = 0,
and then state |00〉 would be eliminated from β, con-
tradicting the definition of β. Similarly, if q1 = 0, then
p1q1 = 0, and state |11〉 would be eliminated. So we
know that p0≠ 0 and q1≠ 0. So state |01〉 has a nonzero
weight, again contradicting the definition of β. The other
possibility, that p1q0 = 0, leads to the same problems.

So there’s no way to get rid of the states that aren’t in
β without also getting rid of the states that do belong.
Thus our hypothesis that β could be built from inde-
pendent qubits must be false. In other words, the bits
must be entangled, or dependent on each other.

This analysis shows us that we can’t build up the 2-
qubit system β by assembling two independent qubits.
The state is a combination of composites. And we’ve
seen that because of the states I used to build β, observ-
ing either qubit tells us the status of the other.

Entanglement can get pretty interesting. Let’s look at
a 4-qubit system δ made up of three equally weighted
states:

Before we measure anything, the odds of finding the sec-
ond qubit in state |1〉 are two out of three. Now suppose
that we measure the first qubit of δ and find it in state
|0〉. Then we know the whole thing: δ = d0. But if the
qubit is |1〉, then δ is projected into a new state that’s a
50/50 combination of the other two states: δ=(1/√2)
(d1+d2). Note that the second qubit has now been pro-
jected as well, because it’s entangled with the first.

We might capture this interpretation by writing δ as
a combination of states that depend on the first qubit:

Just for fun, suppose that instead we measure just the
fourth qubit. If it comes up in state |0〉, then δ is in a 50/50
mix of states d0 and d1. If qubit four is in state |1〉, then δ
is in state d2. We might then choose to write δ this way:

These formulations for δ are equivalent, but they
express different relationships among the qubits. The
physical system isn’t changed by how we choose to write
its components, but these different expressions help to
highlight different entangled relationships.

δ = +()⊗()+ ⊗()2

3
001 110 0

1

3
110 1

δ = ⊗()+ ⊗ +()()1

3
0 010

2

3
1 100 101

= + +()1

3
0010 1100 1101

δ = + +

1

3
0 1 2 ()d d d

p p q q

p q p q p q p q

0 1 0 1

0 0 0 1 0 1 1

0 1 0 1

00 1 01 10 11

+()⊗ +()
= + + +

= +()⊗ +()p p q q0 1 0 10 1 0 1

β = wb wb w w0 1 00 11+ = +

Andrew Glassner’s Notebook

90 September/October 2001

More entanglement
Entanglement can lead to some surprising practical

applications. Many derive from the fact that entangle-
ment doesn’t have a limited lifetime. Particles created
in an entangled situation will stay that way until they’re
measured. Another surprising fact is that two entangled
qubits don’t have to be near one another. In fact, they
can be on opposite sides of the room, or opposite ends
of the universe. And finally and most strangely, when
we measure one particle of an entangled pair, we also
implicitly measure the other and it simultaneously col-
lapses into the necessary state.

As one example of entanglement’s features, let’s look
at a famous thought experiment called the Einstein-
Podolsky-Rosen, or EPR, experiment. We’ll create an
entangled 2-qubit system δ=(1/√2) (|00〉+|11〉). We’ll
take the first qubit (call it q0) and put it in a safe here at
home, and we’ll send the other qubit (q1) away at the
speed of light.

Let’s now freeze ourselves for 10 million years and
then wake up again. First things first: we have lunch.
Then we return to our experiment.

In the time that’s passed, particle q1 has traveled to a
spot 10 million light years away. Let’s suppose that we
have a friend out there who can catch the particle and
measure it, if need be.

On our side, we’ll open up the safe and take out par-
ticle q0. Before we measure it, it has a 50/50 chance of
being in state |0〉 or |1〉, and of course q1 is in the same
condition. Now we measure q0, and suppose that we
find it’s in state |0〉. Instantly, on the other side of the
universe, entangled particle q1 snaps into state |0〉. It
takes no time, and it’s absolutely certain. Somehow,
just by looking at a particle here on Earth, we have
instantly and measurably affected a particle 10 million
light years far away!

This happens because the particles are entangled:
when one is projected, so is the other. Nothing in the
physics we’ve looked at (or even in the physics we
haven’t looked at) requires time to communicate this
information. It’s just how quantum mechanics works.
No matter where they are in the universe, when we mea-
sure one entangled particle, the other one instantly
snaps into the state demanded of it.

This conclusion has bothered a lot of people for a lot
of reasons, and scientists have carried out many exper-
iments to prove or disprove this result. It turns out that
every test of the theory has confirmed this quantum
behavior, and no test has ever yet contradicted it.

At first blush, entanglement seems to imply the oppor-
tunity for instant communication across arbitrary dis-
tances, which could lead to all kinds of marvelous
technologies. It turns out that the results are more sub-
tle, as we’ll see next time. The bottom line is that yes, it
appears that you can instantly alter the state of a parti-
cle on the opposite side of the universe, but that opera-
tion alone isn’t enough to transmit useful information.
As far as we know now, you can indeed send informa-
tion instantly via entanglement, but it’s useless until you
transmit at least a little bit more information over clas-
sical channels. We’ll see the details behind this in the
next issue.

Although this means that we can’t run out and build
Star Trek style teleportation devices based on this theo-
ry, entanglement is of great practical importance for
many applications, from quantum cryptography to our
current focus of quantum computing.

Quantum gates
Now that we’ve seen how to create quantum bits and

registers, and we’ve seen a little bit about how these
registers behave, let’s look at actually using these ideas
for computation. I’ll start by showing how to general-
ize today’s common classical circuits into quantum-
style versions, and then discuss what happens when
we think of the inputs as quantum states rather than
zeros and ones.

Classical computers are built out of primitive logic
elements called gates. Basically, a gate is a little machine
that takes one or more bits of input and produces one
or more bits of output. For the following discussion, I’ll
name the inputs starting with the letter a, and outputs
starting with x. I’ll write the negation of a bit a as a, so
if a = 0 then a = 1, and vice versa.

Reversibility
The simplest gate is the NOT gate, which has a single

input and output. It just flips its input bit: x =a. Figure 4a
shows the standard symbolic picture for the NOT gate.
Its truth table is very simple:

The next most common gates are the 2-input, 1-out-
put gates called AND and OR. The AND gate outputs a
1 only if both inputs are 1, while OR outputs a 1 if either
(or both) of its inputs are 1. Different authors sometimes
use different symbols to indicate the logical-and and log-
ical-or operations. I use a common notation that writes
AND as x = a ∧ b and OR as x = a ∨ b. Figures 4b and 4c
illustrate these gates. Here are their truth tables:

AND OR: :

a b x a b x
0 0 0
0 1 0
1 0 0
1 1 1

0 0 0
0 1 1
1 0 1
1 1 1

NOT :
a x
0 1
1 0

IEEE Computer Graphics and Applications 91

(a)

(e)

(d)

(c)

(b)

(f)

4 Basic logic
components.
The (a) NOT ,
(b) AND, (c) OR,
(d) NAND,
(e) NOR, and
(f) XOR gates.

If we place a NOT gate at the end of either of these, we
create NAND and NOR gates, as shown in Figures 4d
and 4e. The truth tables are exactly the opposite of the
ones for AND and OR:

The last elementary gate we’ll look at is the 2-input, 1-
output XOR gate. This outputs a 1 if exactly 1 of its inputs
is a 1. Written x = a ⊕ b, Figure 4f shows the symbol.

The AND and NOT gates form what’s called a com-
plete set of gates. You can prove that if you have enough
of these two gates, you can build a circuit that can eval-
uate any computable function. Other sets of complete
gates exist: for example, OR and NOT taken together do
the job. The NAND gate is called a universal gate because
it’s a complete set all by itself.

Quantum gates are like classical gates, but they have
an extra requirement that changes things. Because of
the underlying physics, quantum gates must be
reversible. This means you can deduce the inputs from
the outputs.

Classical gates generally aren’t reversible. The NOT
gate is an exception: its input is just the opposite of its
output. But notice that the other gates we discussed have
fewer outputs than inputs. This means that some infor-
mation gets lost, and we can’t recover that. For exam-
ple, if an AND gate has an output of 1, we know its inputs
are both 1. But if an AND has an output of 0, then we
only know that at least one of the inputs is also 0—we
can’t get any more precise than that. Quantum gates, in
contrast, need to be completely reversible. This means
that there are always at least as many outputs as inputs.
If a gate has n inputs and outputs, we sometimes call it
an n-wire gate.

We can build reversible gates in several ways. Let’s
look at one of the simplest, which implements a
reversible form of XOR: this is the controlled-NOT
gate, written Cnot. The controlled-NOT is a 2-wire gate

(see Figure 5); here’s the truth table:

We typically call input a the source, and it passes through
unchanged: x = a. We call input b the target, and it turns
into the XOR of a and b: y = a ⊕ b.

The Cnot gate is reversible because the inputs can be
completely determined from the outputs. It’s called the
controlled-NOT because you can think of it as negat-
ing the target if and only if the source is 1. That is, if
the source is 0, then y = b, but if the source is 1, then
y =b. The result is still just y = a ⊕ b, but sometimes
this functional viewpoint is more useful when think-
ing about circuits.

It would be nice to find a universal gate for reversible
computation, just as the NAND is universal for classical
computation. The Cnot gate doesn’t fill the bill, but some-
thing close to it does. In 1980, Toffoli introduced the 3-
wire gate (Figure 6), now called the Toffoli gate. Inputs
a and b pass through unchanged: x = a and y = b. Input
c is transformed by computing the XOR of c with the log-
ical AND of a and b: z = c ⊕ (a ∧ b). The Toffoli gate tog-
gles input c if inputs a and b are both 1, otherwise c
passes through unchanged. You can think of this like a
series circuit with two switches and a light: the light only
goes on (that is, c only flips) if both switches are on (both
a and b are 1).

Quantum logic
So far I’ve only discussed classical values of 0 and 1

for each input and output bit. Let’s now move into the
quantum realm.

It will probably be no surprise that the quantum stan-
dard bases |0〉 and |1〉 correspond to the classical 0 and
1. Of course, the big change is that quantum bits can be
superpositions of these states.

Let’s see what happens when we use superpositions
for input qubits in the 2-wire Cnot gate.

Think of the values of a and b together as a 2-qubit
input register α, and x and y together as a 2-qubit output
register β. We’ll first create qubits a and b by mixing
equal amounts of each basis state, and then form their
tensor product to create the input register α:

C

a b x y

not:
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

XOR :

a b x
0 0 0
0 1 1
1 0 1
1 1 0

NAND NOR : :

a b x a b x
0 0 1
0 1 1
1 0 1
1 1 0

0 0 1
0 1 0
1 0 0
1 1 0

Andrew Glassner’s Notebook

92 September/October 2001

a

b

x

y

5 The controlled-OR or Cnot gate; a is the signal, b is
the target. Output x=a, and if x=0, then y=b, else y =b.

b

c

y

z

a x

6 The Toffoli gate. Output x=a and y=b. If x=1 and y=1,
then z =c, else z=c.

To keep things generalized, let’s change the weights
on α so that the states aren’t equally probable:

where the sum of the squares of the weights vi is 1.
Because the controlled-NOT swaps the value of the last
qubit based on the value of the first, it effectively swaps
the weights on the last two states to create the output
register β:

In fact, the Cnot gate is a great way to manufacture
entangled pairs. Let’s prepare a qubit in state |0〉 − |1〉
and feed it into input a and put a qubit in state |1〉 into
b. The result is an entangled pair that’s an equally blend-
ed register in the entangled state (1/√2)(|01〉 − |10〉).
Entangled pairs are a basic building block for many
quantum algorithms, as we’ll see next time.

How should we describe how quantum gates work?
In the classical domain, truth tables do a fine job—you
look up the inputs and read off the outputs. But a quan-
tum gate takes several superimposed input bits and pro-
duces superimposed outputs, which isn’t the sort of
thing that we can capture with a truth table.

The expressions for the Cnot gate point suggest that
the gate simply changes the weights on the inputs. We’re
already used to a mathematical device that takes a col-
lection of related values and transforms them: the
matrix. We can think of the four v weights mentioned
previously as a four-element vector that gets trans-
formed. Here’s one way to write Cnot:

The matrix form is a natural for representing quan-
tum gates, but we need to establish a convention for rep-
resenting states. For example, when we write a 2D point
as (3, 5) we’re implicitly writing it as a combination of
the two basis vectors in 2D: 3x+5y = 3[1, 0] + 5[0, 1].
We can only leave off the vectors because we know by
convention that they should be applied in the order x
and then y. Without that convention, we wouldn’t know
if we meant (x = 3, y = 5) or (y = 3, x = 5).

In quantum computing, a similar convention exists.
If there are n qubits, then we’ll have 2n combinations of
the bases. Thus an n-qubit register corresponds to a ket
with 2n entries. Now that we know the size of the kets,
we need to establish a convention for ordering them.

The convention used in quantum computing works this
way: write out the state of the ket as a binary string and
put a 1 in the column position corresponding to that bina-
ry number, starting with 0 at the top. For example, here
is the 4-tuple basis, corresponding to a 2-qubit register:

There’s nothing magical about this convention, just
as there’s no reason we order 2D points as (x, y) rather
than (y, x); it’s just the agreed-upon procedure.

You probably won’t be too surprised to see that this is
the convention I used in the description of the Cnot gate
above. To summarize that, here’s the definition of the
Cnot gate both in terms of how it transforms states, and
as a matrix:

More compactly, we can build the matrices as outer
products:

where

To see why this compact form is the same as the
matrix above, we first expand the outer products:

Plugging in the definitions of I2 and X2 from above, this
gives us:

Then we expand the tensor products:

which is the definition of Cnot.

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

+

=

1 0
0 0

1 0
0 1

0 0
0 1

0 1
1 0

⊗

+

⊗

0 0
1 0

1 1 0
0 0 0

1 1
0 1

0 0 0
1 0 1

 = =,

I X2 2
1 0
0 1

0 1
1 0

=

 =

,

C I Xnot = ⊗ + ⊗0 0 1 12 2

C not :

00 00

01 01

10 11

11 10

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

→

→

→

→

=

00

1
0
0
0

01

0
1
0
0

10

0
0
1
0

11

0
0
0
1

=

=

=

=

, , ,

′
′
′
′

=

v

v

v

v

v

v

v

v

0

1

2

3

0

1

2

3

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

β = + + +v v v v0 1 3 200 01 10 11

α = + + +v v v v0 1 2 300 01 10 11

α = ⊗ = + + +()a b

1

2
00 01 10 11

α = ⊗() = ⊗()1

2
0 1

1

2
0 1 , b

IEEE Computer Graphics and Applications 93

Let’s use this convention to represent the 3-wire
Toffoli gate. We can write this as a big matrix:

The outer-product version is much simpler:

We can capture the effect of the Toffoli gate succinct-
ly by showing what happens to particular input patterns:

I said earlier that the Toffoli gate is universal, in the
sense that if you have enough of them, you can build a
circuit to evaluate any quantum-computable function.
Another complete quantum gate is the Fredkin, or con-
trolled-swap, gate:

where S2 is the 2-qubit swap operator:

If you want to expand these out to see the matrices
for yourself, remember to use the standard bases as
defined previously. For example,

A purely quantum gate
The gates we’ve seen so far bear a close similarity to clas-

sical logic. Let’s look at a gate that has no counterpart in
the classical world: the one-wire square-root-of-not gate.

Here’s the definition of this gate:

What this gate tells us is that if we feed in a qubit in a
pure state, we’ll get back a state that’s an equal super-
position of the two bases. That gives us a way to create
superimposed states from pure ones, which does come
in handy. But the really interesting thing about this gate
is apparent when we apply it twice. If you apply this
transformation to a single input twice in a row, or equiv-
alently square the above matrix, you’ll get this result:

Applying √NOT to a pure input creates a perfectly
unpredictable blend of the standard bases, while a sec-
ond application inverts the input qubit (note that
because probabilities are squares of the weights, the
probability of observing a qubit in state −|1〉 is −12 = 1).

The square-root-of-not gate has no corollary in the
classical world—it’s truly a quantum gate. When applied
to an input it creates pure randomness but when applied
again to that result it eliminates the randomness to cre-
ate a single, purely deterministic state that’s the input
state’s opposite.

A quantum full adder
Let’s wrap up this month with a simple but useful

quantum circuit. We’ll build a full adder. The classical
version of this circuit takes three 1-bit inputs, typically
called a, b, and Cin. The idea is that we want to add up
two big binary numbers one bit at a time. So we add up
first the least-significant bits, then the next-most-
significant bits, and so on. At each step we add the incom-
ing carry bit Cin, a, and b, and output a single sum bit s
and a carry-out bit Cout. Here’s the classical truth table:

In short, add up the values of a, b, and Cin, and treat Cout

and s as the high- and low-order bits of their sum. The
value of Cout becomes the carry-in bit Cin to the next
stage.

To turn this into a quantum circuit, think of the inputs
as qubits rather than regular bits. This doesn’t require
us to change anything directly, but let’s adopt a quan-
tum style and build the circuit using only Cnot and Toffoli
gates.

If you enjoy this sort of problem, you might want to
take a shot at designing this circuit yourself before look-
ing at the following text and figures. The solution does-
n’t require a lot of gates. If you find your circuit getting
very complicated, you’re probably trying too hard.

Figure 7 shows two ways to build a quantum full-

ADD

in out

:

a b C C s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0

NOT

2 0 1

1 0

0 1
1 0

:
→−

→
=

−

NOT

 0

 0
 :

0
1

2
1

1
1

2
1

1

2

1

2
1

2

1

2

→ −()
→ +()

=
−

01 10

0 0 1 0
0 0 0 0 0
1 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 =

S2 00 00 01 10 10 01 11 11= + + +

F I I S= ⊗ ⊗ + ⊗0 0 1 12 2 2

T x y z x y z x y, , , , () = ⊕ ∧

T z z1 1 1 1, , , , () =

T x y x y x y, , , , 0() = ∧

T I I C= ⊗ ⊗ + ⊗0 0 1 12 2 not

T:

000 000

001 001

010 010

011 011

100 100

101 101

110 111

111 110

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

→

→

→

→

→

→

→

→

=

Andrew Glassner’s Notebook

94 September/October 2001

adder. You can verify for yourself that when the inputs
aren’t superpositioned, the outputs follow the truth
table for a classical adder.

Here’s the beautiful part: if the input qubits are in a
superposition state, then so are the outputs. This means
that if we prepare a=(1/√2) (|0〉+|1〉), and b and Cin to
similar mixed states, then the adder presents at s and Cout

all possible values from the truth table simultaneously.
When we examine, or measure, the input bits, then

the output bits are immediately projected to the appro-
priate values for those inputs. In effect all the possible
sums for all possible inputs are computed simultane-
ously and are just sitting there, waiting for us to pick one
out by measuring some of the qubits. Because the cir-
cuit is reversible, we can measure the outputs instead if
we want, and from them, deduce the inputs that creat-
ed them.

The adder of Figure 7a has a characteristic that’s com-
mon in quantum circuits: the inputs appear unchanged
at the outputs. This is certainly one way to make
reversibility easy, because we don’t have to expend any
effort to recover the input values.

We often express this by writing a quantum circuit’s
input as a concatenation of two registers: the input sig-
nal itself and a placeholder for the result. This place-
holder is usually set to state |00…0〉, but it can be in any
prepared state. Then the circuit simply replaces those
qubits in the output register.

If a circuit U applies a function f, then we write this as

Next time
My goal here was to lay out the basics of quantum

computing notation and computational techniques.
Now that we can build gates, we can look at quantum
computation’s building blocks.

In the next issue, I’ll continue our journey into quan-
tum computing by presenting some simple quantum cir-
cuits, and then taking a look at some of the unexpected
phenomena and computational and cryptographic tech-
niques that result from this theory. �

Acknowledgments
Thanks to Don Mitchell and Kirk Olynyk for comments

and suggestions.

Readers may contact Glassner directly by email at
andrew_glassner@yahoo.com.

U x x f xf , , () 0 →

IEEE Computer Graphics and Applications 95

a x

b y

Cout

Cin

Cin

Cin

s0

0

Cout0

a x

b y

s

(a)

(b)

7 (a) A quan-
tum full adder
that uses a total
of six gates:
three Toffoli
gates and three
Cnot gates. (b) A
different adder
that uses only
four gates: two
Toffoli gates
and two Cnot

gates.

Further Reading
As I mentioned in my last column, much of the research in the

field is available in electronic form on the publicly accessible Los
Alamos Physics Preprint Archive at Los Alamos National Labs,
located at http://xxx.lanl.gov/abs/quant-ph. The LANL server
contains mostly Postscript papers, but it can convert many of them
into PDF and other output formats on demand.

My principal sources for this month’s article included An
Introduction To Quantum Computing for Non-Physicists by Eleanor
Rieffel and Wolfgang Polak (LANL 9809016), Quantum
Computation by Dorit Aharonov (LANL 9812037), Quantum Gates
and Circuits by David P. DiVincenzo (LANL 9705009), and Basic
Concepts in Quantum Computation by Artur Ekert, Patrick Hayden,
and Hitoshi Inamori (LANL 0011013).

Quantum Networks for Elementary Arithmetic Operations by Vlatko
Vedral, Adriano Barenco, and Artur Ekert (LANL 9511018) discusses
more sophisticated approaches to quantum addition. The original
discussion of the Toffoli gate appears in “Reversible Computing,”
by Tommaso Toffoli, in Automata, Languages and Programming,
J.W. de Bakker and J. van Leeuwen, eds., Springer-Verlag, New
York, 1980, pp. 632-644.

