
Every now and then surprising new theories appear
on the scientific stage that hold the promise of dra-

matic new technologies. Quantum computing is one of
these. The ideas in this field radically change the way
we think about computers and computing.

In my last two columns, I introduced the theory of
quantum computing and presented its basic terminolo-
gy and notation. In this installment, I’ll wrap up my dis-
cussion of the subject by presenting some interesting
quantum algorithms and then showing how quantum
computing can change the world of cryptography, or the
sharing of secrets.

Before we get going, I’ll briefly recap some of the most
important points from the last two columns. If you
haven’t read those columns, you might want to take a
look at them because this summary will be more of a
reminder than a tutorial. Toward the bottom of the
review section, I’ll introduce a few conventions that will
be useful in this issue.

Our story so far
The quantum version of a bit is the qubit. We write a

qubit’s state as a ket, which is a two-element column vec-
tor of complex numbers. The traditional states are |0〉
and |1〉. A qubit can be in a superposition of states, when
it’s literally in two or more states at once. We write this
superposition as a linear sum of the states: ψ=a|0〉+b|1〉,
where a and b are complex numbers. When we observe
a qubit, it’s projected into one of the states allowed by

its own structure and the measuring apparatus. Once
projected, the qubit stays in that state until otherwise
manipulated.

The probability of finding a superimposed particle in
any given state is the square of the weight on that state.
For ψ in the last equation, the probability of finding it in
state |0〉 is |a|2. By convention, we normalize the
weights so that the sum of their squares is 1.

When we mix two states equally, we can write
ψ=a|0〉+a|1〉. Normalization requires that |a|2+|a|2=1,
which for a real value of a means a=1/√2. This normal-
ization is so common that I will use the symbol σ=1/√2
in this column. I’ll assume that all of our coefficients are
real from here on out.

We can realize qubits in practice with a variety of
quantum particles. For example, we can represent the
two states |0〉 and |1〉 with two perpendicular polariza-
tions of a photon.

We can create systems of multiple qubits, which are
the quantum equivalents of classical registers. We
assemble qubits into a quantum register with the tensor
product, written ⊗. For example, given qubits α0, α1, and
α2, we can build a 3-qubit register α = α0 ⊗ α1 ⊗ α2. We
write the state of such a system as a ket with multiple
elements, such as |010〉.

We can create entangled pairs, also called EPR pairs.
These pairs are only permitted to exist in particular con-
figurations, so if we measure one particle, the other
instantly snaps into its required state no matter where it
is. Therefore, if one particle of an entangled pair is on
Earth and the other is on Saturn, at the precise moment
when one of the particles is observed (and thus takes on
one and only one state), the other particle is also instant-
ly projected into its corresponding state. For example,
if the pair is ψ0=|00〉+|11〉 and we measure the first par-
ticle and find it to be |0〉, the second particle also instant-
ly is projected into state |0〉. Another EPR pair is
ψ1=|01〉+|10〉. If we find the first particle in state |0〉,
then the second particle instantly snaps into state |1〉.

Because column vectors represent quantum states,
we can transform them with matrices. As we saw last
issue, matrices can represent quantum gates that are the
counterparts of all the traditional classical gates (such
as AND and OR).

In addition to those gates, there are five common
operations that we’ll use this issue. The first four are

Andrew
Glassner

0272-1716/01/$10.00 © 2001 IEEE

Quantum Computing, Part 3 ________________________

Andrew Glassner’s Notebook
http://www.glassner.com

72 November/December 2001

Errata
In Part 2 of this series (published in the

September/October 2001 issue), a couple of
errors slipped into Figure 7 (page 95).

In Figure 7a, the wire marked Cin has a dot
where the left-most vertical line crosses it. That
dot should be moved two wires to the right.
Thus, the first Toffoli gate is controlled by inputs
a and b, the second by a and Cin, and the third
by b and Cin.

In Figure 7b, the vertical lines that form the
Toffoli gates on the wire marked Cin shouldn’t
extend below the bottom of the open circles.

I is the identity transformation, which does nothing to its
inputs. The other three transformations have names
given them by convention and have nothing to do with
the X, Y, and Z coordinate systems we know and love
from 3D space.

Another common gate is the Hadamard gate, writ-
ten H:

All five transforms are unitary. The definition of uni-
tary for any matrix M involves M and its conjugate trans-
pose M*. It states that if M is unitary, then MM* = ± I.
If M is made up of only real numbers, then M* is just MT,
or the transpose of M. We represent these gates schemat-
ically with a simple box containing the gate’s letter.

The Hadamard gate’s utility is that it can take a qubit
in a pure state such as |0〉 and turn it into a superposi-
tion of states. If we apply it to each qubit of an n-bit reg-
ister, the result is a register that simultaneously
represents 2n different values. When we apply H to n
qubits of a register simultaneously, we call it the Walsh
(or Walsh–Hadamard) transformation on that register
and write it as W.

Cloning
Cloning is a hot topic. To the news media, it’s all about

bringing dinosaurs back from the dead and creating
designer babies. But in the quantum-computer world,
the term cloning has a less controversial meaning.

Suppose that you have a qubit φ, and you’d like to make
a few identical copies of it. That’s no problem: measure φ
to determine its state, and then make a bunch of new
qubits in that state. But suppose instead that you want to
make copies of φ without measuring it first. That is, you
want to make more qubits in the same state as φ, but you
don’t want to determine the value of φ in the process. This
would be helpful because you could make a few copies of
φ and work with them while they were still in their super-
imposed state. If it took a long time to build up the state
of φ, and you wanted to run several experiments, it would
be handy to make some copies of this input so you
wouldn’t have to build it up from scratch each time.

Unfortunately, cloning isn’t possible. You simply can’t
make a perfect copy of a quantum particle without first
determining its state. The proof is short and sweet. We’ll
suppose that there is some unitary transformation U that

clones, and then we’ll see that this leads to a contradic-
tion. I chose the letter U to remind us that the transform
is unitary (recall that means UU* = ± I).

U works by taking in a 2-qubit register |a0〉 made up
of an unknown qubit in state |a〉 and another qubit in
state |0〉. U turns that second state into a copy of |a〉 with-
out measuring |a〉. In symbols, we want U to produce the
following:

Let’s imagine a second state |b〉, which is orthogonal
to |a〉. We don’t care about the particular choice of |b〉 as
long as its inner product with |a〉 is 0. Symbolically, we
want 〈a|b〉=0. This is easily arranged for any |a〉. Because
U(|a0〉)=|aa〉, we also have U(|b0〉)=|bb〉. Let’s make a
third state that is an equal combination of |a〉 and |b〉:
|c〉=σ(|a〉+|b〉). Because U clones any input, it will also
clone this state: U(|c0〉)=|cc〉. As you’re probably expect-
ing, these conclusions aren’t consistent, and will give us
a contradiction. Let’s see how.

First, let’s write out the cloning of |c〉 by expanding
out the value of |c〉 from its definition. We start by
observing that

Since U is linear, we can write

So far, so good. We have one way to express U(|c0〉).
We said earlier that U(|c0〉)=|cc〉, so let’s expand that out
and see what it looks like:

Uh-oh. This last expression, which is a derivation of
U(|c0〉), is obviously not equal to σ(|aa〉+|bb〉), which
we just derived as another version of U(|c0〉). That’s our
contradiction.

So this shows that at least one of our starting premis-
es must be false. But our only starting premise was that
there exists a unitary transformation U that clones.
Therefore, there can’t be any such transformation, and
therefore we can’t clone states.

You might be wondering if there’s a nonunitary trans-

U c cc

c c

a b a b

aa ab ba bb

aa ab ba bb

0

2 2 2 2

2

() =

= ⊗

= +()⊗ +()
= + + +

= + + +()

σ σ

σ σ σ σ

σ

U c U a b

U a U b

aa bb

0 0 0

0 0

() = ()+()
= ()+()()
= +()

σ

σ

σ

c c

a b

a b

0 0

0

0 0

= ⊗

= +()⊗

= +()
σ

σ

U a aa0() =

H:
0 0 1

1 0 1
1 1
1 1

→ +()
→ −() =

−

σ

σ
σ

I :
|0〉 → |0〉
|0〉 → |1〉 =

(
1 0
0 1

)

X :
|0〉 → |1〉
|1〉 → |0〉 =

(
0 1
1 0

)

Y :
|0〉 → − |1〉
|1〉 → |0〉 =

(
0 1
−1 0

)

Z :
|0〉 → |0〉
|1〉 → − |1〉 =

(
1 0
0 −1

)

IEEE Computer Graphics and Applications 73

formation that clones. Although I haven’t proven it, all
the transforms that we use in quantum computing are
unitary transformations, so there’s no escape hatch—
we simply can’t create perfect clones.

Although we can’t clone an unmeasured particle,
don’t forget that we have no trouble making copies of a
known state; just measure it and manufacture copies.
We also might be able to make an imperfect cloning
device. It’s possible we could find an operation U′ that
creates clones almost, but not quite, all the time. If we
were willing to tolerate that ambiguity or could devise
algorithms that were statistically insensitive to such
errors, we might have a practical tool for cloning states
even though we’re denied perfection.

Dense coding
Let’s look at a neat use of entanglement to speed up

communication. Suppose that anytime you wanted to
send a piece of information to a friend, you could
arrange to use some other information shared long
beforehand, so that when it’s time to send your message
you only have to send half of it. That would be pretty
cool, and it’s what we get from the quantum technique
called dense coding.

The basic idea is this: Alice wants to send 400 classi-
cal bits worth of information to Bob—by classical bits I
mean our old friends 0 and 1 from today’s standard com-
puting. Of course, Alice might be able to compress her

message and save a few bits, so for the sake of the dis-
cussion let’s assume that Alice has applied every com-
pression trick in the book and really needs to send all
400 bits to Bob. In classical communication, there’s no
alternative but to send all 400 bits.

Let’s assume that Alice and Bob knew several years
ago that someday Alice would want to send Bob a mes-
sage. So they went to their local quantum-particle store
together and bought 200 EPR pairs. Each particle of each
pair comes in its own little bottle, so Alice and Bob can
easily identify particle 0 of pair 0, particle 1 of pair 0, par-
ticle 0 of pair 1, and so on. Alice takes home one particle
from each pair and Bob takes home the other. Each locks
up their particles in a safe and forgets about them.

Years pass, and now it’s time for Alice to send Bob her
400-bit message. Using dense coding, and because Bob
holds the other particle of 200 entangled pairs, Alice
can transmit her message by manipulating her 200 par-
ticles and then sending only those 200 qubits to Bob.

To see how this works, let’s break Alice’s original mes-
sage up into sequential pairs of classical bits. Each pair
gets handled the same way, so we’ll just pretend that
Alice only wants to send a 2-bit message s, composed of
classical bits s1 and s0, which represent the decimal num-
bers 0 to 3. These are the first 2 bits in Alice’s message.

Associated with this first pair of classical bits will be
the first EPR pair. Because there are two particles in the
EPR pair, they can represent any one of four states. What
will happen is that Alice will encode her particle in such
a way that when she sends it to Bob, he can combine it
with the particle he already has to determine which of
the four states Alice intended. Figure 1 illustrates the
idea. I’ve labeled the particles at different points in the
process so that we can identify them easily.

Alice starts with her classical bits s0 and s1 in hand and
then unlocks the safe and takes out her bottle marked
“EPR Pair 0, Qubit 0.” This is her half of the EPR pair
marked α in the figure. She knows that Bob will even-
tually take out his bottle marked “EPR Pair 0, Qubit 1”
later on to decode the message. As in Figure 1, I’ll write
the original state of this 2-qubit entangled EPR pair as
α = σ(|00〉+|11〉).

Alice starts out by using the 2-bit value of s to perform
one of four transformations on her qubit of α.

Even though Alice controls only the first qubit of α,
it’s implicitly part of an entangled 2-qubit system. So I’ll
write her operation as a transformation to the entire
state. In practice, that means that if Alice applies trans-
formation A to qubit α0, she’s implicitly applying the
identity transformation I to qubit α1, which of course
doesn’t change it at all.

Alice uses the 2-bit value of s to choose a transform
from the following list: I, X, Y, Z. It’s important that Alice
and Bob agree on the order of the operations in this list;
the particular order I’m using here is the conventional
one. So for example, if s = 01, Alice applies X ⊗ I to α.
The result is β, which is a modification of the original
entangled pair α where Alice has transformed the first
qubit (β0), but the second qubit (β1) is unaffected.

Let’s track the resulting system values for each of
Alice’s four choices. Starting with α=σ(|00〉+|11〉), Alice
creates β by modifying the first qubit according to her

Andrew Glassner’s Notebook

74 November/December 2001

I

H
X

Y

Z

α β γ δ

s1 s0

1 Dense coding. Alice and Bob share an EPR pair,
labeled α. The qubits are labeled from the top, so α0 is
in Alice’s control, and α1 is in Bob’s. Alice’s part of the
process is in the red box. Alice takes the first 2 bits of
her message and uses it to direct qubit α0 into one of
four transformations. She sends the resulting qubit to
Bob. Bob’s steps are in the green box. Bob applies a Cnot

gate to his 2-qubit system β creating γ. He measures γ1

immediately and runs γ0 through an H gate to create δ0,
which he measures.

Table 1. Alice’s encoding step for dense coding
(see Figure 1).

s Operation β
00 (I ⊗ I)α σ(|00〉+|11〉)
01 (X ⊗ I)α σ(|10〉+|01〉)
10 (Y ⊗ I)α σ(−|10〉+|01〉)
11 (Z ⊗ I)α σ(|00〉−|11〉)

choice of transformation (see Table 1). Notice that β is
just α with an altered first qubit.

Having applied this operation to the pair, Alice sends
her qubit to Bob via traditional channels—for example,
she gives it to a courier who drives it over to Bob’s house.
The point is that she only sends one qubit to Bob.

Now that Bob has both qubits in his hand, he applies
a Cnot gate, transforming the system from state β to γ. To
see what these four expressions look like, let’s write out
the application of Cnot to each of the four possibilities for
β (see Table 2). I’ve written out the 2 qubits of γ inde-
pendently in the table’s right-most two columns. The
important thing to notice here is that the two qubits of
γ are now unentangled: Bob can measure either one
without affecting the other.

Bob starts by measuring the second qubit, γ1. If this is
|0〉, Bob knows the original 2-bit message that Alice
wanted to send was either 0 or 3. Similarly, if γ1 is |1〉,
Bob knows the input was either 1 or 2. To disambiguate
between these, Bob now applies H to the first qubit to
create δ0 (see Table 3). The table column labeled δ0 is
the result of simplifying the value of H(γ0). By measur-
ing this qubit, Bob can now completely identify the 2-
bit message that Alice wanted to send. If δ0 is in state |0〉,
then Alice’s original 2-bit message was either 0 or 1.
Similarly, if δ0 is in state |1〉, then Alice’s message was
either 2 or 3.

Combining δ0 with γ1, Bob now knows exactly which
of the four states Alice’s original 2-bit signal represents.
Alice sent Bob only a single qubit, but she managed to
communicate her 2-bit message.

The conclusion is that dense coding lets us transmit a
message of n classical bits by sending over only n/2
qubits. The technique depends on an preexisting reser-
voir of entangled particles that the correspondants share.

Dense coding has practical value when the costs of
transmitting information is high or the communications
link is slow.

One place where both of these criteria hold is in space.
Electrical power is precious aboard a spacecraft, and
every bit of information that’s radioed back to a receiv-
ing station uses up some of that energy. To complicate
things, sometimes a spacecraft only has limited win-
dows of opportunity in which to transmit and receive
data, so the information must flow as quickly as possi-
ble. Dense coding helps a spacecraft save time and ener-
gy by requiring only half the number of classical bits to
be transmitted. This halves the transmission time and
thus halves the power drain: a double win!

One drawback to dense coding as I’ve presented it
here is that one needs to actually physically send and
receive qubits. This might be particularly tricky for a
spacecraft. Besides the inconvenience, the costs of a
delivery mechanism can steal away the gains offered by
dense coding. The next section describes a way to send
the state of a quantum particle from one place to anoth-
er without the need for bicycle messengers.

Teleportation
Closely related to dense coding is a technique called

teleportation. This name was perhaps an optimistic
description for this process, because it conjures up Star

Trek images of people beaming up from far-away plan-
ets. In today’s teleportation, we aren’t really beaming
dogs, people, or even cantaloupes from one place to
another. Rather, we send a quantum particle’s state from
one place to another without looking at it.

That last statement might come as a surprise because
I proved earlier that we can’t clone a quantum particle.
That is, we can’t make a copy of it without looking at it.
Teleportation doesn’t violate that proof, but it provides
a sneaky way around it. We can reproduce the particle
at another location without measuring it first, but we
must destroy the original in the process. That means we
can’t actually clone it, in the sense of making an identi-
cal one in addition to the first, but we can recreate it else-
where. This is probably the sense in which the Star Trek
metaphor actually could apply: If you step on the trans-
porter pad, you disappear from the ship and reappear
on the planet. To create the new you, the old you is nec-
essarily taken apart; there can only be one of you at a
time. In some Star Trek episodes, something goes wrong
with the teleporter and they end up with two or more
copies of the teleported person. In our terminology, that
would be cloning, so that particular horror scenario isn’t
possible in quantum teleportation.

Like dense coding, an EPR pair α that Alice and Bob
share makes teleportation possible. Suppose that Alice
has a single qubit φ that she wants to send to Bob, but
she doesn’t know what state φ is in and she doesn’t want
to measure it. We can write the qubit φ as

and although Alice doesn’t know a or b, she wants Bob
to end up with a new qubit that is in the same state as φ.
The process will follow roughly the same stages as dense
coding in reverse, as Figure 2 (next page) shows.

To teleport φ to Bob, Alice creates the tensor product
of the unknown qubit φ with an entangled pair
α=σ(|00〉+|11〉):

φ α σ σ

σ

⊗ = ⊗ +()+ ⊗ +()
= + + +()

a b

a a b b

0 00 11 1 00 11

000 011 100 111

φ = +a b0 1

IEEE Computer Graphics and Applications 75

Table 2. Bob’s first encoding step for dense coding.

β γ = Cnot(β) γ0 γ1

σ(|00〉+|11〉) σ(|00〉+|10〉) σ(|0〉+|1〉) |0〉
σ(|10〉+|01〉) σ(|11〉+|01〉) σ(|1〉+|0〉) |1〉

σ(−|10〉+|01〉) σ(−|11〉+|01〉) σ(−|1〉+|0〉) |1〉
σ(|00〉−|11〉) σ(|00〉−|10〉) σ(|0〉−|1〉) |0〉

Table 3. Bob’s second decoding step for dense
coding.

γ0 H(γ0) δ0

σ(|0〉+|1〉) σ(σ(|0〉+|1〉)+σ(|0〉−|1〉)) |0〉
σ(|1〉+|0〉) σ(σ(|0〉−|1〉)+σ(|0〉+|1〉)) |0〉

σ(−|1〉+|0〉) σ(σ(|0〉−|1〉)−σ(|0〉+|1〉)) |1〉
σ(|0〉−|1〉) σ(σ(|0〉+|1〉)+σ(|0〉−|1〉)) |1〉

Now Alice has a 3-bit quantum register, created out of φ
and α; let’s call it λ.

Alice now applies (Cnot ⊗ I) to λ to get µ, which will
change the second qubit depending on the status of the
first:

Next, Alice applies H to the first qubit of µ to get ν:

The result of all this work is that Alice now has a 3-qubit
system in state ν, which is a superposition of four, equal-
ly probable states.

Alice’s last step is to measure these first 2 qubits.
Because ν1 is entangled with qubit 1 of α (now named
ν2), when Alice measures ν1, she’s implicitly projecting

Bob’s particle as well. Alice has now
caused Bob’s qubit to be projected
into one of four possible states.

Alice’s measurement of the first 2
qubits identifies four possible states.
Alice can encode this result using
two classical bits to create a binary
number from 0 to 3. Alice sends
these two classical bits to Bob over
classical channels, such as radio or
the Internet.

An important point to notice is that
when Alice measured the first 2
qubits of ν, she caused both qubits to
be projected into some particular
state. The first qubit of ν came from
her original qubit φ. So when Alice
measured the first 2 qubits, ν0 got pro-
jected into some particular state, and
lost its superimposed qualities. In
other words, she lost φ forever. This is
why teleportation isn’t cloning; the
input qubit φ gets destroyed in the
necessary measurement step.

Now Bob is ready to recreate the original φ that Alice
wanted to send him. He uses the two classical bits that
Alice sends to apply one of four transforms to his qubit
(ν2), according to Table 4. In other words, by applying
the appropriate transformation to the third qubit of ν,
Bob has managed to reconstruct the original qubit φ.

Success!
The cost of teleportation is in the setup: creating and

sharing an entangled pair, sending two classical bits, and
destroying the quantum particle on Alice’s end. The tech-
nique’s value is that Bob can make a copy of φ without
requiring Alice to measure it. Note that strictly speaking
Alice and Bob don’t have to share the EPR pair before the
transmission because Alice can send the quantum parti-
cle ν2 to Bob along with her two classical bits.

Teleportation gives us a way to communicate with
spacecraft using dense coding after all. As long as we
send it up with a big supply of entangled particles, we
can get a lot of efficient communication.

Quantum-key distribution
Cryptography is an important subject for any new

communication and computing technique, and quan-
tum computing is no different. Effective cryptography
is a huge field, which I won’t even start to summarize
here. Rather, I’ll just focus on one of the exciting devel-
opments that are on the horizon as a result of quantum
computing.

To set the stage, if Alice and Bob want to share a secret
message, they need at least three things: the secret mes-
sage in readable form (called the plaintext), a medium
for communicating (the channel), and a way to make
the subject unintelligible to anyone else but lets Bob
recover the plaintext (the cryptographic method).

Perhaps the safest of all cryptographic methods is
called the one-time pad. I’ll describe it here briefly because
it will give us a point of reference for the next discussion.

At some point, Alice and Bob get together and create

ν µ

σ

σ

= ⊗ ⊗()
= + + +()

+ + − −()
= +()+ +()

+ −()+ −()

H I I

a

b

a b a b

a b a b

2

2

000 011 100 111

010 001 110 101

00 0 1 01 1 0

10 0 1 11 1 0

(

µ λ

σ

= ⊗()
= + + +()

C I

a a b b

not

000 011 110 101

Andrew Glassner’s Notebook

76 November/December 2001

I

X

Z

Y

λ µ ν

φ

φ

H

2 Teleportation. Alice and Bob share an EPR pair. Qubits are again labeled
downward, with 0 at the top. Alice’s steps are in the red box. Alice com-
bines α0 with her input φ to create a system called λ. She executes a Cnot to
make µ and then applies an H gate to µ0 to create ν. Alice measures ν0 and
ν1 to get a value from 0 to 3, which she sends to Bob using two classical
bits. Bob uses this 2-bit message to apply one of four transformations to his
half of the EPR pair, creating a new particle in state φ.

Table 4. Teleportation (see Figure 2).

Bits from ν2 Operation Result
Alice

|00〉 a|0〉+b|1〉 I a|0〉+b|1〉
|01〉 a|1〉+b|0〉 X a|0〉+b|1〉
|10〉 a|0〉−b|1〉 Z a|0〉+b|1〉
|11〉 a|1〉−b|0〉 Y a|0〉+b|1〉

a pair of identical codebooks. In
their simplest form, these code-
books are just big books with pages
of random numbers. To send her
secret information, Alice first writes
out her message in plaintext. Then
she looks at the first letter of her
message and the first letter of the
codebook. For a simple example,
suppose the letter is A and the num-
ber in the codebook is 4. Alice adds
four letters to A to get E, and that
becomes the first letter of the secret
message, called the ciphertext. In
this way, Alice works her way
through the plaintext letter by let-
ter, using sequential entries from
the codebook, creating the cipher-
text. When she reaches the bottom
of a page in the codebook she turns
it over, and when a sheet has been
used up on both sides she rips it out
and burns it, moving on to the next
page.

When Bob receives the message, he simply follows the
process in reverse, subtracting the codebook’s numbers
from each letter in the ciphertext to recover the plain-
text. He too burns the codebook as he works through it.
The technique is called the one-time pad because each
entry in the codebook (or pad) is used only once and
then destroyed.

This is obviously a simple example, but with well-
designed codebooks, and algorithms for using them,
this process is secure. Much of its power comes from the
fact that the codebook is a one-time information source,
so even if eavesdroppers somehow manage to crack a
single message, they must start over again to crack the
next one. The one-time pad lets the encrypted message
be publicly communicated—it can be read over the radio
or even printed in a newspaper. Without the codebook,
the message is perfectly safe.

Despite its strength in protecting secrets, the logistics
of the one-time pad make it difficult to use in practice.
Perhaps the hardest part is getting together to share the
codebooks and then keeping them secure until needed.
Therefore, people have devised a wide range of alter-
native methods for creating, distributing, and recover-
ing information in a codebook, also known as the key or
the one-time key.

In digital computing, we often treat everything in
sight as a simple string of bits. Think of the plaintext and
the key as just long lists of bits, as in Figure 3. To encrypt
the message, Alice just computes the XOR (written ⊕) of
each plaintext bit with the corresponding bit from the
key and sends the result; this is the ciphertext. Bob then

does another XOR of the same key with the ciphertext to
recover the plaintext.

The famous Enigma machine from World War II con-
tained a complex mechanical device for creating an
encryption key. The widely used commercial RSA sys-
tem uses products of prime numbers to produce a key.

One of the toughest practical aspects of the one-time
key is that both parties must meet ahead of time to
exchange identical copies of the key and then keep them
safe and secure. It would be great if there was a conve-
nient way to create and exchange a one-time key when
it was needed.

That’s exactly what quantum computing gives us.
Quantum-key distribution, or QKD, offers a way for two
people to create a one-time key on demand in a safe and
convenient way. They can even check to make sure that
nobody has intercepted the key while it was being sent.
Let’s see how it works.

In this description, I’ll use polarized photons as an
example of a quantum particle. Recall from part 1 of this
series that we can polarize a photon in either of two per-
pendicular directions. I’ll briefly summarize the rele-
vant properties in the next few paragraphs.

Looking down the photon’s path, we can imagine
placing a clock or a compass so that the photon goes
through the disk’s center. Let’s use a compass here, as
in Figure 4. We can set the polarizer so that the photon
leaves vibrating in either the north–south plane (which
I’ll write as |↑〉 or the perpendicular east–west plane
(which I’ll write as |→〉).

We can measure the photon with a detector, which is

IEEE Computer Graphics and Applications 77

P 0 0 1 1 0 1 1 0 0 1
K 1 1 0 1 0 0 1 1 0 0

P ⊕ K 1 1 1 0 0 1 0 1 0 1
(P ⊕ K)⊕ K 0 0 1 1 0 1 1 0 0 1

3 P is the plaintext message. K is
the key. To create the ciphertext,
compute P ⊕ K. To recover P from
P ⊕ K, simply XOR it with K again.

4 When Alice creates her photons, she controls their polarization. (a) |→〉:
Setting S for a 0 bit. (b) |↑〉: Setting S for a 1 bit. (c) |↗〉: Setting D for a
0 bit. (d) |↖〉: Setting D for a 1 bit.

(a) (b)

(c) (d)

oriented as well. Figure 5a shows this. If we orient the
polarizer in the north–south plane, then it can distin-
guish between north–south photons and those polar-
ized east–west.

Now suppose that we rotate the polarizer 45 degrees,
so that the photons are coming out in the northeast–
southwest plane (|↗〉) or the northwest–southeast plane
(|↖〉). If we leave the detector in the north–south orien-
tation, as in Figure 5b, then it can’t disambiguate between
these two cases. The detector will report about 50 per-
cent of the photons as being in state |↗〉and about 50 per-

cent of them in state |↖〉. The outcome will be complete-
ly random on a photon-by-photon basis.

If we now rotate the detector 45 degrees, then we can
perfectly measure the two different states because we’ve
aligned the detector in their directions. But if we send
in a north–south photon, it’ll now be randomly classi-
fied as one direction or the other.

The conventional way for Alice to encode her bits is
shown in Figure 6.

Figure 7 summarizes the situation. If the detector is
set randomly for each incoming photon, half the time it
will correctly measure the photon’s state. The other half
of the time it will record noise. The detector will output
a value, of course, but the value will be random and tell
us nothing about the incoming photon.

These observations are the tools for a basic QKD
system.

One essential step along the way to creating practical
systems for dense coding, teleportation, and QKD is to
find a way to create and maintain stable PDR pairs. This
means getting quantum particles to become entangled,
and then staying that way. I haven’t focused much on
these practical questions in these columns, but I’d like
to mention a couple of recent developments that have
people feeling very optimistic.

In a paper published this year, Kielpinski et al. report-
ed on their work at NIST on creating entangled systems
of beryllium ions. They’ve put together entangled sys-
tems of four ions in the state σ(|↑↑↑↑〉+|↓↓↓↓〉). This
opens the way for practical two-qubit computational
devices.

More recently, Julsgaard, Kozhekin, and Polzik have
published surprising results on entangling two huge
clouds of cesium gas, each containing about a trillium
atoms. Because they were entangled, large-scale
changes in one cloud were mirrored in the other. The
cesium clouds were held in place by magnetic fields
inside vessels lined with paraffin wax. Entanglement is
a fragile state, and left on their own it’s not atypical for
particles to disentangle within a million-billionth of a
second. But because these clouds were so large, the sys-
tem remained entangled for half a millisecond, which
is an eternity in the quantum world. The two capsules
were separated by several millimeters, which again is
an astonishing distance in the quantum realm. Even
more amazingly this all happened at room temperature!

Although these recent results in entanglement are
causing a lot of excitement, they don’t quite make for a
complete, practical, and economic system for building
and maintaining entangled systems of quantum parti-
cles. They give us plenty of hope though that such
advances aren’t far away.

With this optimism in place, let’s take a closer look at
how to use entangled particles to share secret messages
in confidence.

Sending a quantum key
First I’ll describe how quantum-key distribution

works, and then I’ll show why it’s secure.
Alice’s polarizer has two settings: S and D. If she sets

the polarizer to S, then photons emerge in only the two
states |→〉 and |↑〉. As you might expect, if Alice sets the

78 November/December 2001

5 When Bob measures a photon,
his detector needs to be in the
same orientation as Alice’s polariz-
er. In this case, Alice has set her
polarizer to setting S. (a) Bob sets
his detector to S and correctly
measures the incoming photon.
(b) Bob sets his detector to D, and
his measurement is random.

Andrew Glassner’s Notebook

Basis Value Encoding
S 0 |→〉
S 1 |↑〉
D 0 |↗〉
D 1 |↖〉

6 How Alice
and Bob have
agreed to
match up pho-
ton polariza-
tions with
binary bits.

7 A summary
of the results of
the different
possibilities for
Alice’s polarizer
(circles) and
Bob’s detector
(squares). The
green circles
indicate when
Bob’s measure-
ment will be
accurate. The
red X’s indicate
when Bob’s
measurement
will be random.

(a)

(b)

polarizer to D, the photons will emerge in the two states
|↗〉 and |↖〉.

Alice and Bob have agreed how to match up photon
polarizations with bit values according to the table in
Figure 6.

Remember at this point that Alice and Bob are only
trying to transmit their key, not the message. Once the
key has been exchanged and is secure, they can send the
message publicly.

Refer to Figure 8 for an illustration of the following
process; I’ll refer to each row of this figure as we work
through the process. Alice starts by using a random-
number generator to create a binary key, (see line 1).
The goal is to transmit this to Bob securely.

For each bit in the key, Alice randomly chooses either
the S or D orientation for her polarizer and writes down
her choice. This is line 2. Now Alice sends the key to Bob
bit by bit, setting the polarizer to the appropriate setting
and encoding her bits using the correspondence in Figure
8. This results in the photon string in line 3. Alice sends
this string of photons to Bob over any public channel.

Now we turn our attention to Bob. He’s got a detec-
tor with the same two settings, S and D. For each incom-
ing photon, Bob randomly chooses an orientation, and
positions the detector accordingly. Bob’s choices in this
example are in line 4. If it’s more convenient, Bob can
make his choices ahead of time and just consult the table
as the photons come in.

Bob measures each photon using the current settings
of his detector and writes down the measurement,
resulting in line 5. Note that when Bob happens to guess
right and has his detector oriented in the same way as
Alice’s polarizer, he correctly records the photon’s state.
But when Bob guesses wrong, he gets a random result.

When Alice has transmitted all the bits, Bob publicly
sends Alice his detector settings from line 4. Note that
he doesn’t send his measured bits but just the settings
that he chose to use. This information may be sent pub-
licly. Alice then compares this to her private list (line 2)
and sends back another public transmission telling Bob
where he guessed incorrectly. Line 6 shows this public
transmission.

Now Bob and Alice discard the bits where Bob
guessed wrong (and thus got random measurements),
as line 7 shows. The bits that were correctly guessed
become the secret, one-time pad for Alice’s upcoming
message. Line 8 shows the string of bits that form the
key; incorrectly guessed bits are just skipped.

Since Alice and Bob are both randomly picking their
respective orientations, they expect to find that Bob

guessed right about 50 percent of the time over the long
run. So this process, while not stunningly efficient, isn’t
terribly inefficient either. If Alice wants to send an n-bit
key, she only needs to send roughly 2n photons.

When Alice has finished sending the key to Bob, she
can follow it up with a short test message, which she
encrypts using the new key that she and Bob have just
agreed on. She can send this message over public chan-
nels. Bob decodes it using the key, and then sends the
resulting decrypted message back to Alice, again over a
public channel if he wants.

Why would Alice and Bob do such a thing? It lets them
confirm that their communications link is working, but
there’s an even better reason: this lets them determine
if anyone was listening in when they exchanged their
key. If the message that Bob sends back to Alice match-
es her original transmission, then their key is secure and
they can start to trade secrets. But if anyone was listen-
ing in when they exchanged the key, about 25 percent of
the bits that Bob sends back will be wrong, and this will
clearly identify that someone was eavesdropping.

To me, this is one of the most beautiful results in quan-
tum computing. Let’s see where it comes from.

Catching eavesdroppers
Let’s suppose that while Alice is sending her photons

to Bob—that is, sending the information on line 3 of
Figure 8—an interpoloper named Eve is eavesdropping.

Let’s think carefully about what everyone wants in this
process. Alice and Bob want to exchange their key accu-
rately and securely. That is, Bob has to get the correct bits,
and they both have to know that nobody else has them.

Eve’s options are a bit broader. She might simply want
to stop Alice and Bob from communicating at all, by
blocking their transmission channel. That’s effective but
not very subtle, and it gives away her presence. Eve’s real
goal would be to catch a copy of the key in secret. Then
Alice and Bob would continue exchanging messages
thinking that they were secure, while Eve decrypts each
one and acts on her ill-gotten knowledge. Therefore,
Eve’s goal is to get a copy of the key without revealing
her presence. In terms of Figure 8, she needs to catch the
photon stream in line 3 that Alice is sending to Bob.

Eve’s fondest wish would probably be to capture the
photons, make copies of them, and then forward one
copy to Bob while keeping a copy for herself. Her best
approach would be to make copies of the photons with-
out measuring them first, but that would require cloning,
and we saw earlier that quantum cloning is impossible.

So Eve’s best remaining bet would be to intercept each

IEEE Computer Graphics and Applications 79

1. 0 0 1 0 1 1 0 1 0 0 1 1 0 1
2. S S D S D D D S D D S S D S
3. → → ↖ → ↖ ↖ ↗ ↑ ↗ ↗ ↑ ↑ ↗ ↑
4. D S S S D D S D S D S D D D
5. ↖ → → → ↖ ↖ ↑ ↖ → ↗ ↑ ↖ ↗ ↗
6. × • × • • • × × × • • × • ×
7. → → ↖ ↖ ↗ ↑ ↗
8. 0 0 1 1 0 1 0

8 QKD. 1. Alice’s key. 2. Alice’s
polarizer settings. 3. The photons
Alice sends. 4. Bob’s detector set-
tings. 5. Bob’s measured photons.
6. Alice’s report that tells Bob when
he guessed wrong. × means an error,
• means correct. 7. The photons Bob
measured correctly. 8. The key Bob
gets combining line 7 with line 4.

photon as it comes by, measure it, create another photon
in the same state, and send that on to Bob. In that way,
she gets to read each photon and Bob is none the wiser.

Well, that almost works, but not quite. In fact, Eve will
give herself away if she tries this. The problem is that
Eve doesn’t know how to measure the photons she’s
intercepted. Like Bob, she is unaware of the settings that
Alice used on her polarizer. So, like Bob, Eve must guess
at a setting for her detector, and again like Bob, she has
a 50–50 chance of getting it right for any given photon.
When Eve’s guess at a detector setting matches Alice’s
polarizer setting, Eve measures the photon properly, but
the other half of the time she gets noise.

So Eve just goes forward as best she can. After mea-
suring the intercepted photon, she creates a copy in the
same state and sends it on to Bob.

Let’s look at what can happen to the first bit of the
message. Figure 9 shows the possibilities.

In the first column, Alice sets her polarizer to S, and
sends a photon in state |→〉. Eve is lucky and guesses S,
measures the photon as |→〉, and sends it on to Bob. Bob
is also lucky, guesses S, detects |→〉, and Eve appears to
have gotten away with it.

In the second column, Eve guesses correctly and sends
along a |→〉 photon to Bob, but he guesses D for his detec-
tor. We know this bit will get thrown out later when Bob
tells Alice that he guessed D, so again Eve has gotten
away with her eavesdropping.

In column 3, Eve guesses wrong and sets her detector
to D. This means that her measurement is going to be
randomly either |↗〉 or |↖〉. I’ve indicated this with ∅,
to indicate that any information about the original pho-
ton has been lost (I’m using the symbol ∅ to indicate a
random value). Eve makes a copy of her received pho-
ton (in state |↗〉 or |↖〉) and forwards it to Bob. Now in

this case, Bob sets his detector to S. What does he mea-
sure? Remember that the photon he’s receiving now is
random. When Eve measured it, she projected it into
one of the D states. So even though Bob’s got the right
setting on his detector, he’s getting a photon that is ran-
domly oriented in one of the D states. So half the time he
will measure the photon as |→〉, and half the time as |↑〉.
That’s where Eve gets caught, as we’ll see in a moment.

Finishing up in column 4, Bob here again guesses
incorrectly in his detector setting, so it doesn’t matter
what Eve did.

Now when Eve isn’t listening in on the conversation,
every time Bob guesses Alice’s orientation correctly, he
will correctly decode Alice’s bit. But when Eve is listen-
ing, then we’ve seen that about 25 percent of the time
Bob will guess correctly, but still get the wrong bit. The
error occurs when Eve guesses wrong and sends Bob
noise (which she does half the time), and then Bob mea-
sures that noise, so he has only a 50–50 chance of mea-
suring the photon in the same state that Alice intended.

Now we see the value of the test message I described
earlier. Alice encrypts a piece of plaintext and sends it
to Bob using the new key, using a public channel if she
wants. Bob decrypts it and sends Alice back the result-
ing plaintext, again publicly if he so deires. If about 25
percent of Bob’s bits are wrong, Eve has been caught.

Figure 10 shows one possible result of Eve’s interlop-
ing on the signal of Figure 8.

There’s no way for Eve to get around this problem;
she’s blocked from every direction. Quantum uncer-
tainty means that she can’t measure the photons cor-
rectly every time. Because measurement changes the
photon’s state, she can’t measure it twice. Because she
can’t clone the incoming photons, she can’t send an
undisturbed stream to Bob.

Andrew Glassner’s Notebook

80 November/December 2001

1. 0 0 0 0
2. S S S S
3. → → → →
Q. S S D D
R. → → � �
4. S D S D
5. → � � �
6. • × • ×
7. → �

9 How Eve’s interception changes Bob’s results. In each column, Alice is
sending a 0 bit using the S setting on her polarizer. The lines have the same
meanings as Figure 8, except for new lines, Q and R. Q shows Eve’s detector
settings, and R shows Eve’s measured photons, which she sends to Bob. In
column 1, Eve and Bob both guess correctly, and Bob gets the correct bit. In
columns 2 and 4, Bob guesses incorrectly so his measurements are thrown
away. In column 3, Bob guesses correctly but Eve guesses wrongly. Half the
time Bob will measure the value that Alice sent, and half the time he’ll get it
wrong. The symbol ∅ indicates a noisy, or random, measurement.

1. 0 0 1 0 1 1 0 1 0 0 1 1 0 1
2. S S D S D D D S D D S S D S
3. → → ↖ → ↖ ↖ ↗ ↑ ↗ ↗ ↑ ↑ ↗ ↑
Q. S D D S S S D S S S D D D S
R. → � ↖ → � � ↗ ↑ � � � � ↗ ↑
4. D S S S D D S D S D S D D D
5. � � � → � � � � � � � � ↗ �
6. × • × • • • × × × • • × • ×
7. � → � � � � ↗
8. 0 0 0 0 1 1 0
9. • • × × × • •

10 QKD with eavesdropping. The lines have the same
meanings as in Figure 9, with the addition of Line 9,
which presents the results when Bob and Alice compare
their bits. Notice that information can be corrupted
either when Eve guesses wrong (on Line Q), or when
Bob guesses wrong (on Line 4). In Line 8, I’ve chosen a
random value for the bit in cases when Eve corrupted
the data and sent a random bit. The symbol × means an
error, • means correct. Generally, about half of the bits
marked ∅ on Line 7 will result in errors on Line 8. The
presence of errors in Line 9 reveals that Eve was listen-
ing in on the exchange.

The very fundamentals of quantum mechanics mean
that although she can get away with capturing a few of
the bits of the key, over the long haul her eavesdropping
will be caught. It doesn’t even have to be that long a haul.
With a 25 percent error rate, she’s going to be detected
easily and quickly.

Once Alice and Bob know that Eve listened in, they’re
safe. They might be inconvenienced, but their secret
won’t be compromised because they know not to send it
in the first place. They would probably choose to try
again with a new key (perhaps using another commu-
nications channel) and hope Eve isn’t listening in this
time. Of course, Eve can listen in on every attempted key
transmission and thereby prevent Alice and Bob from
exhanging encrypted messages, but she’ll never be able
to listen in on the secrets they do send.

You might like thinking about other strategies that
Eve could employ to make a copy of the key without giv-
ing herself away. So far, nobody has found a way for Eve
to copy the key without revealing herself in some way.

Of course, any cryptographic system can be compro-
mised in practice in ways that have nothing to do with
the value of the theory the system is based on. For exam-
ple, a big break in cracking the Enigma system used in
World War II came from its operators failing to initial-
ize the machine properly. At least in theory, quantum-
key distribution so far seems to offer an ironclad way of
creating private one-time keys. The only way to stop
Alice and Bob from exchanging secrets is to always
eavesdrop or prevent them from communicating at all.

Quantum algorithms
Two basic papers are widely considered to be the sem-

inal works in the field of quantum computing. In 1994,
Peter Shor invented an algorithm for factoring large num-
bers. This algorithm catapulted quantum computing into
the front pages of newspapers and magazines around the
world, and sparked a lot of interest among theoretical and
practical physicists and computer scientists.

As we’ve discussed, cryptography is an important
technique in all sorts of communication and informa-
tion storage methods. Of the many cryptographic sys-
tems currently in use on computers, the RSA system is
one of the most popular. This technique is based on the
observation that factoring prime numbers is apparent-
ly a hard problem. Suppose I pick two large, relatively
prime numbers M and N and compute a new number
P = MN. I can make P so large that it has hundreds or
even thousands of decimal or binary digits. Now sup-
pose that my encryption scheme is based on the num-
bers M and N, but I only reveal P. It’s currently
prohibitively time-consuming to start with a huge num-
ber like P and find its prime factors M and N.
Mathematicians and computer scientists have spent a
lot of time and energy on this problem, and it remains
difficult. Factoring prime numbers isn’t probably hard
in theoretical sense; there could be a fast and simple
algorithm lurking right around the corner that nobody
has found yet. But because researchers haven’t found
such an algorithm, RSA has been widely adopted for
keeping secrets.

Shor’s algorithm dropped a bombshell in the crypto-

graphic community, because it showed how a quantum
computer could factor even enormous prime numbers
without taking forever. Should a quantum computer of
enough power be built, the secrets encoded by RSA since
it was first developed might be easily read by everyone.

The second big development came in 1996, when Lov
Grover presented an algorithm for finding a particular

IEEE Computer Graphics and Applications 81

Further Reading
As in the previous columns in this series, I used many papers

publicly available on the Los Alamos Physics Preprint Archive at Los
Alamos National Labs, located at http://xxx.lanl.gov/abs/quant-ph.
In particular, see the paper by Eleanor Rieffel and Wolfgang Polak
for the proof of the impossibility of quantum cloning.1

The quantum-key distribution scheme I presented is commonly
called BB84 after its inventors, Bennett and Brassard, and its
publication year. It was republished in 1985.2

The recent breakthrough in macroscopic entanglement by
Julsgaard, Kozhekin, and Polzik was published in the September
27, 2001 issue of Nature. You can find an online preprint of the
article in the LANL archives.3

Entangled states of four trapped ions have been produced in the
laboratory. Details appear in the article by Sackett et al. in Nature.4

You can read an earlier version of this article at the LANL archives.5

You can find a nice overview of quantum cryptography in “From
Quantum Cheating to Quantum Security” by Daniel Gottesman
and Hoi-Kwong Lo. It’s available at http://www.physicstoday.org/
pt/vol-53/iss-11/p22.html.

Shor’s algorithm for factoring large numbers appeared in 1997.6

The text is also available online from Peter Shor’s Web page at
http://www.research.att.com/~shor/papers/.

Grover’s searching algorithm is available in several forms. One
summary is on the LANL archives.7 A published version appears in
the Physics Review Letters.8

To test out quantum programs, you’ll either need to build a
quantum computer or else a quantum-computer emulator. Unless
you’ve got a physics lab handy, I recommend the latter. It’s easier
to get going and cheaper, too! Happily, there are some available
for free. Hans De Raedt, Anthony H. Hams, Kristel Michielsen, and
Koen De Raedt describe the QCE program for Windows.9

References
1. E. Rieffel and W. Polak, An Introduction To Quantum Computing for Non-

Physicists, LANL 9809016, 1998.
2. C.H. Bennett and G. Brassard, “Quantum Public Key Distribution,” IBM

Technical Disclosure Bulletin, vol. 28, 1985, pp. 3153-3163.
3. B. Julsgaard, A. Kozhekin, and E.S. Polzik, “Experimental Long-Lived

Entanglement of Two Macroscopic Objects,” LANL 0106057, 2001.
4. C.A. Sackett et al., “Experimental Entanglement of Four Particles,”

Nature, vol. 404, 2000, pp. 256-259.
5. D. Kielpinski et al., “Recent Results in Trapped-Ion Quantum

Computing,” LANL 0102086, 2001.
6. P.W. Shor, “Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms On A Quantum Computer,” SIAM J. Computing,
vol. 26, no. 2, Apr. 1997, pp. 1484-1509.

7. L.K. Grover, A Framework for Fast Quantum Mechanical Algorithms,
LANL 9711043, 1997.

8. L.K. Grover, “Quantum Mechanics Helps In Searching For A Needle In A
Haystack,” Physical Review Letters, vol. 79, no.2, July 1997, pp. 325-328.

9. H. De Raedt et al., Quantum Computer Emulator, LANL 9911041, 2000.

item in a database of N items in only O√N steps; rough-
ly that means it will take only k√N steps for some value
of k. This is important because many important prob-
lems can be thought of as searching problems, or can be
mapped into them. I used a variant of this algorithm in
part 1 of this series to find the minimum-energy solu-
tion to a radiosity simulation.

I won’t present these algorithms here because they
are nontrivial. I wanted to mention them so you’d be
familar with these famous names and techniques. The
“Further Reading” sidebar points to some articles that
contain both high-level and detailed descriptions of
these algorithms and their implications.

Graphics algorithms
In part 1 of this series, I described an algorithm for

quantum radiosity. By now you’ve probably thought of
a dozen more graphics algorithms that could be made
faster or even practical for the first time on a quantum
computer.

The first place to go hunting for cool quantum com-
puting applications is anything involving searching for
a minimum or maximum because Grover’s algorithm
can speed this up significantly. The Z-buffer is a prime
candidate for this kind of technique. With a quantum
computer we wouldn’t have to draw in all of our microp-
olygons as they come by, discovering the nearest one
simply because it’s the only one left after all the scan-
conversion has finished. Rather, we can attach one
quantum computer to each pixel and throw all of our
micropolygons at each one. Then, we use Grover’s algo-
rithm to find the micropolygon with the smallest Z
value, shade it, and fill in the pixel.

Ray tracing is another brute-force searching algorithm
that would benefit from this sort of speedup. For sim-
plicity, suppose we had a picture made up entirely of
spheres (ray-tracing people just love spheres). Finding a
ray-sphere intersection involves solving for the roots of
a quadratic polynomial and then typically sorting for the
smallest nonnegative root (see any book on ray tracing
for the details of this calculation). The polynomial we

want to solve is at2 + bt + c, and we’re looking for the
values of t, which are given by the formula we learned
in high-school algebra: t=(−b±√b2− 4ac)/2a. Each
sphere has its own values a, b, and c and results in its own
pair of t values. (If there’s no intersection, we still get val-
ues for t, but they’re imaginary.) The value of t tells us
how far we need to travel along the ray from its starting
point until we reach the sphere.

To find the nearest intersection of a given ray with all
the spheres, load up three quantum registers with a
superposition of all the values of a, b, and c for all the
spheres in the scene. Now compute the two roots of t
with these superimposed registers. Just like that, in one
calculation, you have the t values for every sphere in the
scene, all at once! Now you just need to use a clever tech-
nique like Grover’s algorithm to bump up the probabil-
ity value associated with the state that has the smallest
real nonnegative value of t. Measure the t register and
out pops the number.

In practice, you’d probably want to attach an object
ID to the t register, so you get back not just the smallest
value of the ray parameter but also the identifier for the
object that was hit. This will be necessary to look up
information like the surface normal, materials and tex-
tures, and so on.

There are few things that we can count on from devel-
oping technologies, but change is one of them. Quantum
computing is going to create a lot of change in the world
of computing, including computer graphics. These arti-
cles have only described the beginnings of a field that is
less than a decade old. When engineeers and physicists
work out ways to build large and economical quantum
computers, hang onto your hats because everything we
know about computers is going to be up for grabs. �

Acknowledgments
Thanks again to Kirk Olynyk and Don Mitchell for

their help with this series of columns.

Readers may contact Glassner by email at
andrew_glassner@yahoo.com.

Andrew Glassner’s Notebook

82 November/December 2001

