
Pop-up cards are fun to create and receive. They’re
also a great output medium for computer graphics,

offering an economical and compact way to show 3D
scenes without the need for special glasses, shutters, or
any other electronic hardware.

In my last column, I talked about the geometry behind
two basic pop-up mechanisms: the single-slit and the V-
fold. These are the heart of my interactive pop-up design
assistant, which I use to design cards on the computer
that I  then print out and assemble.

Happily, the single-slit and V-fold mechanisms are
also among the most general of all techniques used in
pop-ups, since many of the other constructions are com-
binations of these mechanisms or variations on their
geometry.

Of course, a variety of pop-up mechanisms exist that
aren’t captured by those ideas. Happily, most of those
are straightforward to design and create with special-
purpose code and don’t present the sort of design chal-
lenges that the slit and V-fold designs do. We’ll see some
of them later.

Building an assistant
In this section, I’ll describe how I put together my pop-

up design assistant. Let’s begin with a quick review of
the relevant geometry from my January/February 2002
column.

Figure 1 shows the basic geometry of a single slit from

that column. To briefly recap, recall that plane π1 doesn’t
move, while plane π2 rotates around the central fold LF

by an angle ω. This tells us how to find point Cω. The only
missing point is Bω, which we find by intersecting three
spheres. Writing (A, r) for a sphere with center A and
radius r, the spheres are (A, |AE|), (D, |DE|), and 
(Cω, |DE|).

To create a V-fold, we only need to generalize this a
little bit. Figure 2 shows the new geometry, where Bω no
longer lies next to E. Remembering that B0 is the location
of point Bω when ω = 0, we can find Bω by intersecting
three spheres with the same locations as the single slit
but with slightly different radii. The spheres are (A,
|AB0|), (D, |DB0|), and (Cω, |DB0|).

That’s the essence of the geometry. What remains are
the data structures, algorithms, and routines to evalu-
ate the geometry. Let’s take these in turn.

The heart of any program lies in its data structures.
For my assistant, the most important data structure is
the riser. A riser contains the information we need to
position all the points of a single-slit or V-fold element.

The riser’s first job is to help us identify points A, D, and
Cω. I represent each point with three pieces of informa-
tion: a pair of coordinates, a pointer to another riser, and
a flag. To position a point, I retrieve the pointed-to riser
and select either the left or right side as specified by the
flag. I then use the central fold and the appropriate bot-
tom edge as two vectors that span a plane, scale those vec-
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tors by the coordinate values, and add those results togeth-
er to find the sought-after point’s position. Figure 3 shows
this idea. This recursion of risers pointing to other risers
ends with a special riser marked as the card.

I maintain all of the risers in a list. I add new risers to
the end of this list as they’re created (and of course
remove them when the designer eliminates them from
the model).

To process the risers, I start at the beginning of the list
and look for a riser that can be positioned; that is, both
risers it depends on are already positioned, and it isn’t
already positioned itself. If I find such a riser, I compute
its points and mark it as positioned. When I reach the
end of the list, if I positioned any riser on that pass, I go
back to the start and go through the list again.

When I pass through the list but nothing gets posi-
tioned, then every riser should be accounted for. I scan
the list once more as a check and look for unpositioned
risers. If I find any, I report an error.

On the first pass through the list I can only position the
card itself. Special-purpose code handles the card,
because it doesn’t depend on any other risers. I mark it as
positioned and then continue running through the list.
Because the risers are strictly hierarchical, this algorithm
should always produce a completely positioned card.

The two coordinates associated with each point
describe the scale factors on the edges of the riser on
which the point depends. One of those edges is always
the riser’s central edge. The other is the left or right bot-
tom edge, as selected by the left or right flag.

The system must reposition the entire card every time
the designer changes the opening angle, which occurs
frequently. If efficiency is an issue, you can preprocess
the list and build a tree structure that you can later tra-
verse in a single pass. I found that repeatedly running
through the list of a dozen or so risers was no problem
for my 800-MHz Pentium III PC to handle in real time.

Carrying the geometric ball
Last time I described my algorithm for finding Bω as

the intersection of three spheres. Here are the details
behind the heart of the routine.

Suppose we have three spheres, S1, S2, and S3, with
radii r1, r2, and r3. The radii needn’t be different, but they
generally will be. Figure 4 shows three such spheres, and
the plane that contains their centers. I’ve also marked in
black one of their intersection points; there’s another
point symmetrically placed on the other side of the plane.

We’ll work with these spheres in pairs. It doesn’t mat-
ter where we start, so let’s pick S1 and S2. When two
spheres intersect, the points in common form a circle.
Our first goal is to find the plane that contains that cir-
cle (see Figure 5).

We saw last time how to find the point J on the line
that contains the two sphere centers, as in Figure 6 (next
page). To recap, the sphere centers are C1 and C2, their
radii are r1 and r2, respectively, and they’re distance d
apart. We find J by finding the distance a. We see from
triangle PJC1 that a = r1 cos α. We find cos α from the
Law of Cosines:
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cos α = (d2 + r1
2 − r2

2)/(2r1 d)

so a = (d2 + r1
2 − r2

2)/(2d). Using these values for a and
d, we can find

Our plane passes through J with a normal parallel to
C2 − C1. Let’s call this plane π12. I package this all up in a
routine that takes as input two spheres and returns their
plane of intersection.

We can repeat this for the other two pairs of spheres,

creating planes π23 and π13. Figure 7 shows all three
planes.

Now I intersect any two of these planes to find the
line they have in common (as shown in Figure 8). For
numerical stability, I use a robust technique published
by Jim Blinn (see the “Further Reading” section for a
citation). This algorithm takes as input two planes rep-
resented with homogeneous coordinates and returns
their line of intersection, if there is one (if the planes
are parallel, they don’t intersect and there’s no com-
mon line).

Since Blinn’s paper presents the theory, I’ll just sum-
marize the necessary equations here. The input to the
algorithm is two planes, which I’ll call P and Q. Plane P
has a normal given by (Px, Py, Pz) and an offset Pd; plane
Q is similar. The output is a line defined by a point B and
a direction vector V. The first step is to compute six
handy terms p through u:

p = Pz Qd − Pd Qz

q = Py Qd − Pz Qy

s = Px Qd − Pd Qx

t = Px Qz − Pz Qx

u = Px Qy − Py Qx

These tell us all we need to find the direction vector V:
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Further Reading
In my January/February 2002 column, I

suggested a broad range of pop-up books to
study, how-to books on their construction, and a
few previous technical papers. All those
references contributed to my understanding of
the field. I encourage you to return to that
column for a complete list. As a reminder, the
three books that I’ve found most useful for
discussions of technique are The Elements of Pop-
up by David A. Carter and James Diaz (Simon &
Schuster, 1999), Paper Engineering by Mark
Hiner (Tarquin Publications, 1985), and The Pop-
up Book by Paul Jackson (Henry Holt, 1993).

The solution I presented here for finding the
line of intersection formed by two planes was
published by Jim Blinn in his classic Siggraph 77
paper “A Homogeneous Formulation for Lines in
3-Space,” in Computer Graphics (vol. 11, no. 2,
1977, pp. 237–241).

A good place to start to learn about packing
algorithms in the textiles industry is “Placement
and Compaction of Nonconvex Polygons for
Clothing Manufacture,” by V. Milenkovic, K.
Daniels, and Z. Li, in the Proc. 4th Canadian Conf.
Computational Geometry (1992, pp. 236-243).

For information on ray tracing, and how to
find the intersection of lines with a variety of
geometric objects including spheres, you can
look at An Introduction to Ray Tracing by
Glassner et al. (Academic Press, 1989) or the
more recent Practical Ray Tracing by Peter
Shirley (AK Peters, 2000).



V = (r, −t, u)

I then normalize V—that is, I scale it so that it has a
length of 1.0. Now we can find the base point B. We have
three cases that handle any degeneracies and special
cases:

if r ≠ 0 then B = (0, p/r, −q/r)
else if t ≠ 0 then B = (p/t, 0, −s/t)
else if u ≠ 0 then B = (q/u, −s/u, 0)
else error: planes are parallel

Now we have the line in a convenient parametric
form: L = B + tV, where the real number t sweeps us
along all the points on the line L with direction V and
passing through point B. In Figure 8, point B appears on
the line where it pierces the plane.

It doesn’t matter which pair of planes we choose to
find L, since that line is common to all three planes, as
shown in Figure 9. The line L is shared by all three pairs
of planes. Here I’ve also shown where L intersects one
of the spheres. 

Now that we have a sphere and a parametric line, we
can use standard ray-tracing techniques to intersect that
line with any of the three spheres. I use a library function
that takes a line and a sphere and returns the two points
of intersection. I won’t give the details of that calcula-
tion here, because they’re available in every book on ray-

tracing (see the “Further Reading” section). For numer-
ical stability, I use the sphere with the largest radius. (If
more than one sphere has the largest radius, I use one of
them at random.)

The result is a pair of points, as Figure 10a shows.
Which one do we want? That depends on whether the
card designer wants the pop-up to rise out of the card’s
center or fall back behind it. We make this choice at
design time, of course, and store it with the riser. I use
the normal of the riser that’s referenced by point D to cat-
egorize the two points. Each point will be on either the
riser’s positive or negative side. The designer’s choice is
stored in a flag associated with the riser. The most com-
mon case is where the pop-up rises from the card.

This line–sphere intersection point is of course shared
by all three spheres, because it’s their point of common
contact; Figure 10b shows the line and spheres.

Another useful library routine is one that rotates a
point around a given line by a given angle. This is use-
ful when we want to position points on risers as they’re
moving around a fold axis. Suppose that we have a point
P and a line given by the two points A and B, and we
want to find point Q, the result of rotating P around line
(A, B) by an angle θ.

You can write some efficient code to do this if you
need it. Here’s a solution that uses only common vector
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operations that should be available in almost any 3D
library. Figure 11 shows the basic setup.

We first find the point M which is the point on line AB,
which is closest to P. I first define the vectors C = B − A
and D = P − A. Writing Ĉ for the normalized version of
C, we find M by simply scaling C by the length of the pro-
jection of D onto C:

where I’m using the dot product between Ĉ and D.
Figure 11 shows point M in green.

Now I make two vectors V and H that span the plane
that includes this line and point:

H = P − M
V = H × C

where × is the cross product. I also find the distance r
from P to M:

r = |P − M|

Figure 12 shows the vector H in red and V in purple.
The new point Q is now easy to find. Essentially, we

rotate the point P in a circle spanned by the normalized
H and V vectors and then recenter it to point M:

Figure 13 shows this circle and the position of the new
point Q.

Generations
The method presented in the last section for deter-

mining a pop-up’s points with respect to its base risers
makes it easy to provide designers with a technique
known as generations. Basically that just means cascad-
ing a series of mechanisms one after the other. In terms
of single-slit and V-fold mechanisms, it usually means
placing a new mechanism on the card so that it isn’t
powered by the central card fold but rather by the
induced creases of an earlier riser. So as the riser pops
up, it’s like a little card that is opening, and the fold of
that little card drives another pop-up. Figure 14 shows
the basic idea schematically.

The design assistant I described in the last section
handles this mechanism naturally, because it just
involves placing the points of one riser with respect to an
earlier one. Figure 15 shows an example of a card with

   Q M r r= + +ˆ ˆH V cos  sin θ θ

   M A= + ⋅ˆ(ˆ )C C D
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11 Rotating a point around a line. The line AB is shown
by point A in orange and point B in yellow. The point to
be rotated, point P, is in cyan off to one side. The point
M in green is the point on AB that’s closest to P.

12 The H vector is in red, and the V vector is in purple.

(a)

13 (a) The plane of rotation is formed by the H and V
vectors. The yellow ring shows the circle in this plane
with center M and radius |MP|. The new point Q (in red)
lies on this circle. (b) We find Q as a sum of scaled
versions of the H and V vectors.



multiple-generation V-folds. Note that it’s hard to make
more than a few generations of V-folds on top of each
other. This is because each V-fold sits at an angle a little
closer to the viewer than the one upon which it’s based.
This means that eventually we’ll run out of nice angles
for viewing. More importantly, each generation reduces
the angle of the crease upon which the V-fold sits. When
a V-fold sits on an open card, the two sides are flat. As the
sides come together at a smaller angle, as they do on
higher generation V-folds, it gets more difficult to both
design and construct the card so that it both moves prop-
erly and looks good.

Other mechanisms
Although the V-fold and the single slit provide the

basic geometry for many pop-up designs, I support sev-
eral other mechanisms in my design assistant. (The
books in the “Further Reading” sidebar provide more
details on these mechanisms.) I won’t describe the
detailed geometry of these mechanisms because they’re
all either variations on what we’ve already seen, or
they’re pretty straightforward on their own.

For simplicity, I’ll discuss these mechanisms with
respect to the main card. Of course, they can all be built
with respect to any two risers and built up in a genera-
tions style, one upon the other.

The double slit, as Figure 16 shows, is a minor varia-
tion on the single-slit design. Although I’ve shown it with
cuts that are straight, perpendicular to the fold, and

symmetrical about the fold, none of these need to hold
true—the cuts can be of any shape.

Let’s next look at the strap in Figure 17. The strap lets
us do two things at once: displace the central fold to the
left or right, and reverse the fold’s direction. In Figure 17,
I’ve used the strap to move the fold to the right, and
although the card’s sides form a valley with respect to
the card’s central fold, the strap’s sides form a moun-
tain. The strap’s geometry is easy to implement, because
it always forms a parallelogram with the card.

Figure 18 shows a card built on a strap and two V-
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14 The basic idea of creating generations by using one
V-fold as part of the base for another.

15 A pop-up
card based on
generations of
V-folds. The
yellow flowers
are on a third-
generation riser.

16 A schematic for a double-slit mechanism.

(a) (b)

17 A schematic
for the strap
mechanism.

18 A greeting card that uses V-folds and a strap. The icebergs are V-folds.
The ship is also a V-fold, based on one edge of a strap. (You can see the
strap to the left of the ship since the card is still slightly open.) 

O
rig

in
al

 c
ar

d 
©

 2
00

2 
A

nd
re

w
 G

la
ss

ne
r



folds. The two icebergs are standard
V-folds that rise off the card’s sides.
The ship is a V-fold that sits on one
end of a strap that straddles the cen-
tral fold. Thus when the card opens,
the ends of the strap flatten out and
the ship pops up behind the iceberg.
Because the card isn’t fully open in
this image, you can see the strap to
the left of the ship where it hasn’t
quite flattened out.

You can combine the strap with
the single slit to create the moving arm or pivot mecha-
nism, as Figure 19 shows. The single slit may be a little
hard to see; think of the strap’s top as the slit. The mov-
ing arm is the technique I used in Figure 1 of last issue’s
column to make the flag pop out of the mailbox.
Combining such basic mechanisms is how we achieve
some of the most surprising pop-up effects.

Figure 20 shows a New Year’s card with a moving arm.
The dragon pivots out of the card counterclockwise.

You can create a layer that’s parallel to the card but
sits above it using the technique called the floating layer,
as Figure 21 shows. Supports at the two sides hold up
the floating layer. The supports are generally the same
height and placed an equal distance from the center fold,
but they needn’t be. For stability, one often includes a
support piece in the middle, as Figure 21 shows. By
changing the heights of the three supports, you can
change the slope of the floating layer’s two sides from

flat to inclined in either direction. At the extremes, you
can shrink the side supports to create a mountain or tent,
or shrink the support in the middle to make a valley. The
floating layer idea is versatile, and you can use it to make
complex figures like boxes and cylinders.

Figure 22 shows a party invitation that uses the float-
ing-layer technique for the dinner table. The two chairs
are built out of V-folds.

Pulling tabs
So far we’ve looked at pop-up mechanisms that work

themselves. That is, all the reader has to do is open the
book or card and the paper does its thing. There are also
a few popular mechanisms that let the reader take a
more active role.

One such device, known as the pull tab or pull-up
plane, has various implementations. Figure 23 shows
one of the basic versions. In this mechanism, two sheets
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19 A schematic for a moving-arm mechanism, created
by merging a strap with a single slit.

20 A greeting card that uses the moving arm.

21 A schematic for a floating layer mechanism.

22 An invitation card that uses a floating layer for the table. The chairs are
V-folds.
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make up the page, sandwiching the mechanism
between them. I’ve drawn these obscured parts in gray.

It’s convenient to think of three parts to the pull tab,
even though they’re all made out of one piece of paper.
There’s the tab itself, which sticks out from the page
through a slot cut in the upper sheet. Then there’s the
visible flap, which also sticks up through a slot. Finally,
there’s the bit underneath, which is a single rectangle
of paper with a fold in it.

As you pull the tab, the segment underneath tries to
straighten out and bulges downward. It tries to pull the
visible flap into the space between the paper, but this flap
is taller than the slot. Thus, the part underneath causes
the flap to pivot around the slot. When we pull out the
tab all the way, the flap flips over and lies flush against the
page in the other direction, revealing the flap’s back and
whatever was on the page underneath it.

You can get this effect for free if you use a complete
collision-detection or constraint system, as I discussed
last time. But the mechanism is so simple that a bit of
special-purpose code to flip the flap around the slot can
do the job quickly and accurately.

The pull-tab is a nice way to create a card within a
card. Really ambitious designers can include V-folds and
other mechanisms inside this little minicard, but you
must be careful not to get carried away. The risk is that
people (both adults and children) often quite under-
standably think that if pulling the tab opens the mech-
anism, then pushing the tab should close it. This
sometimes works in simple cases, but often the flap
under the card buckles and then the mechanism never
again works as it should. Sometimes designers reinforce
the hidden flap with additional layers of paper or thick-
er board to prevent this problem.

Spinning the wheel
Another popular device is based on the idea of a wheel.

The wheel has four parts, as Figure 24 shows. In Figure

24a, I show the front of the card. The notch on the left
gives the reader access to the wheel’s edge, and the holes
in the card let what’s printed on the wheel itself show
through. Obviously, these holes can be of any shape and
number as long as the card still holds together. A second
card of the same size and shape (except without the
holes) is usually made made for the back.

Figure 24b shows the wheel itself, which has a rip-
pled edge so that the reader can easily spin it. The two
small parts in Figures 24c and 24d form the hub and nut,
which I’ll show in more detail in a moment. The final
card (as seen from the front) is in Figure 24e. The wheel
shows through the holes, and the reader can spin the
wheel from the side.

The hub is easy to make (once you know the secret).
To make the wheel’s center we need one piece I call the
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23 A schematic
for the pull-tab
mechanism.
Gray parts are
sandwiched
between the
top and bottom
layers of the
card.

(a) (b)

(e)
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24 The parts
for a wheel
mechanism. 
(a) The front
card with a
notch that lets
readers access
the wheel’s
edge, and holes
through which
they see the
wheel itself. 
(b) The wheel.
(c) The nut. 
(d) The butter-
fly hub. (e) The
completed card
as seen from
the front.



butterfly (Figure 24c) and one nut (Figure 24d). You
can see the assembly process in Figure 25. Flip the top
sheet over and glue two wings of the butterfly to the
back of the front card. The red dots in Figure 25a show
where the glue goes to affix the butterfly to the card’s
back. Then, we fold up the butterfly’s wings and pass
them through the hole in the wheel’s center. Next,
straighten out the butterfly flaps and glue the top of
each one to the nut that goes on the top of the stack.
The red dots in Figure 25c show where to apply glue.
Figure 25d shows the final assembly. Notice that noth-
ing gets glued to the wheel itself! That’s why it rotates
freely. Cut the wings so that they’ll fit through the cen-
ter of the wheel. You’ll need to curl up the wings when
you thread them, but they’ll hold the wheel securely
once the nut is in place. When the whole sandwich is
complete, you can glue the card’s front and back togeth-
er around their rim. Make sure to leave enough room
for the wheel to spin freely.

Figure 26 shows a birthday card based on the wheel.
The spokes on the unicycle turn when the wheel spins,
and as the wheel turns, the rider rocks back and forth.
To make the rider’s rock happen I perched the unicyclist
on an arm that passes through a slot in the card’s front,
as Figure 27 schematically shows. Inside the card, I
attached a larger disk behind the wheel with the spokes
printed on it and then placed another hub near the rim
of that disk. Thus as the main wheel goes around, the
smaller hub on its edge goes with it. The rider is pulled
up and down with the wheel’s motion and pivots when
the wheel extends to the slot’s left or right.

Staying in bounds
When the card is folded flat, we usually don’t want

any of the pieces to stick out beyond the cover. I check
for this condition by setting the folding angle ω to 0 and
then calculating the position of every point in the card.
I check to make sure that each point lies within the
region defined by the outermost card. If any points are
outside this region, they’ll stick out when the card is
closed. I mark them with a bright color so that the
designer can fix the problem.

Note that the shape of the outside card doesn’t have
to be rectangular. That’s by far the most common shape
for self-contained cards, but there’s no reason not to use
a card cut into an ellipse or any other shape.
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(a) (b) (c) (d)

25 Constructing a wheel. (a) First
glue two wings of the butterfly to
the back of the front card. 
(b) Thread the other wings through
the wheel. (c) Glue the top of the
wings to the nut. (d) The completed
sandwich seen from the back. The
black line isn’t part of the card, but
is just to show how the pieces are
vertically stacked.

26 A birthday card based on a wheel mechanism. The rider sits on an
extension affixed to the wheel. (a) The card at one position of the wheel.
(b) When the wheel is turned, the spokes turn (they are visible through the
holes in the front of the card), and the rider rocks back and forth. 
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Collisions
One of the hardest problems to solve when manually

designing a card is detecting and resolving collisions. When
you have several mechanisms moving at the same time, in
different places and at different speeds, it’s all too easy to
end up with the pieces banging into each other. This is bad
enough when the card is opening, but it makes it almost
impossible to close the card again without damaging it.

I think the best way to handle collisions is to detect
them and then let the designer figure out how to resolve
them. One can certainly cook up all kinds of automatic
schemes that move the points around algorithmically,
and that would indeed solve the technical side of the
problem, but it may also change the aesthetics. The
point here is to make a designer’s tool, not find a result
that makes the computer happy! I prefer to let the
designer know that there’s a problem and use a human
touch to make things right.

A careful, algorithmically complete job of collision
detection would certainly work well. But it looks to me
like it would be a complicated program—I’d have to fig-
ure out the motion paths for every point, edge, and
plane and then check them all against each other. It
seems easier to take a rough-and-ready approach
inspired by point sampling rendering algorithms.

To search for collisions, I simulate the card’s opening
by stepping the fold angle ω from 0 to π. At each step, I
completely position the card and then look for any edges
that pass through any planes. If I find any, I flag them
and continue. When I’m done, I highlight any offending
edges with a bright color. If the designer clicks on any of
those edges, a display shows all the angles where colli-
sions occurred. The designer can then click to set the
card to one of those angles, which will show the colli-
sion. The designer can then manually adjust the points
to repair the collision and can then go on to fix other
problems, or run the collision-detection routine again.

This scheme is fast and has always worked for me. It
has the potential to fail when there’s an intersection for
a brief period of time between two of the checked angles.
The easiest way to reduce the risk of a collision falling
between the cracks is to simply crank up the number of
steps taken by ω. I use 250 steps by default, and I’ve never
been surprised when building any cards. I bet you could
get away with 100 steps or even fewer if speed is an issue.

Any collisions that sneak through this test are proba-
bly not worth worrying about, because they come and
go so quickly the paper’s inherent flexibility will proba-
bly let it bend enough to avoid actually intersecting. It’s
possible that some big collisions could sneak through
(for example, two corners could just touch and lock up
against each other), but I’ve never seen any failures of
this approach so far.

Printing it
As I said in my last column, my reason for making my

pop-up design assistant wasn’t to create cards for view-
ing on the computer, but rather to create cards to print,
cut out, build, and share. So printing out the designed
card is important.

The first issue is making sure that you can easily and
properly assemble the card. Gluing down the risers in the

right position has always been tricky for me. It’s important
that each piece is just where it should be so that the card
will be flat when folded shut, the pieces will rise and stand
up in the correct place and angle when the card is open,
and we won’t have any collisions along the way.

Before we figure out how to glue the card together,
we have to make sure that there’s something to be glued
down! So far all my discussions have assumed that ris-
ers are infinitely thin and sit on the card, perched there
as if by magic. The stiff paper I use for construction is
thin enough that I don’t have to explicitly model its
thickness for most things. But somehow we do have to
provide tabs for gluing pieces into place.

Figure 28 shows a typical V-fold riser and the two
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27 A schematic
for the cam
mechanism of
Figure 26. The
rider sits on a
piece that
rotates around
a point on the
wheel, through
the use of
another butter-
fly hub and nut
at that point.

28 Creating
little glue-down
tabs for a V-
fold.



tabs that I automatically generate for gluing it down
into place. Note that these glue tabs are little trape-
zoids, not rectangles; particularly at the center of a V-
fold, rectangular tabs would overlap. This would create
an ugly bump and also make the card a little harder to
close.

To help me assemble cards, I have a switch to turn on
the printing of guidelines on all risers that have other ris-
ers built upon them. This is just a colored line where the
riser should be glued down. I then print the tabs with
the same color. So anywhere I see a red line, for exam-
ple, I know that a riser with a red-colored tab should be
glued down on that line.

If you build a card, you’ll quickly discover that the
part of the tab that shows is the back of the page, which
can look pretty bad if the color of the page doesn’t blend
in with the artwork. One solution is to cut a slit where
the riser meets the card, and then slip the tab through
the slit, gluing it to the underside of the card. This
requires a sharp crease to make sure the mechanisms
can rise and fall properly. Another approach is to print
the base riser’s texture on the tab of the riser that sits on
it, so that you can glue down the tab and the art is seam-
less. This requires a color printer that can print on both
sides of the page with good registration.

Now that we know how to assemble the card, we
need to get the pieces onto paper. Of course, we could
be lazy and print one piece per page, but that would be
wasteful. What we really want to do is to pack the pieces
together into the smallest number of pages.

The best references I could find for this process were
in the clothing manufacturing industry, where it’s
important to conserve materials. Every bit of waste is
expensive, so they work hard to lay out the pieces as
efficiently as possible, including rotating them and then
otherwise shuffling them around to get the densest
packing. (The “Further Reading” section identifies a
good paper for getting into that literature.)

Those algorithms can be complex. As always, I prefer
simple solutions that get me 90 percent of the way there
over complex solutions that get me to 100 percent.
Achieving that last 10 percent often requires 10 times

more work! My simple technique is a greedy algorithm
that packs the pieces in one at a time from largest to
smallest.

I begin by creating a data structure called a page,
which contains a list of rectangles, representing regions
of the page that haven’t yet been printed upon. This list
begins with a single rectangle that covers the page. I
run through the list of pieces as a one-time preprocess
and sort them by the size of their bounding rectangles.
I start with the largest rectangle and work my way down
to the smallest, placing them as I go and creating new
pages when necessary.

To place a piece, I look at the first page and its list of
available space—that is, the list of rectangles repre-
senting blank space on the page. I try to position the
piece’s bounding rectangle on this page, trying it in both
horizontal and vertical orientations. If there’s a way to
get the current piece’s bounding rectangle onto the
page, I place it as snugly as I can. I then use simple
geometry to remove that rectangle from the page’s
available rectangle list. If the rectangle won’t fit on this
page, I repeat the process on the next page. If it doesn’t
fit on any existing pages, I create a new page. In this
way, I tend to make a bunch of pages that start out with
just one or two big pieces and a lot of empty space, but
then that space gets nibbled away by the smaller pieces
as they arrive and are placed.

Figure 29 shows the result of this algorithm for the
card design in Figure 18. Note that the algorithm rotat-
ed one of the icebergs and the strap 90 degrees to fit the
page. Without this rotation, the pieces would have taken
up two pages.

This algorithm isn’t perfect by any means. There’s
some waste, and the pieces could surely be packed more
tightly. But I usually get pretty good density on the
pages, and the algorithm has the benefits of being easy
to program and fast to run.

Moving up
There are lots of ways to extend my pop-up card

design assistant. One thing I’d really like to try is apply-
ing computer-vision segmentation techniques to pho-
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29 The final
cutout pages for
Figure 18. I’ve
turned on the
optional heavy
black outline for
these pieces to
make them
easier to cut. 
(a) The card’s
base. (b) The
pieces to be cut.
Notice that the
strap and one of
the icebergs are
rotated 90
degrees.



tographs, automatically dividing them into several
planes based on distance. For example, we could have
a foreground, several middle grounds, and a back-
ground. The system could then take these segmented
regions of the photo, place them on a series of V-folds
spaced roughly like the objects in the scene, and cre-
ate a 3D version of a photograph (sort of like Figure
18). If a couple of versions of the photo are available,
you could use them to fill in the holes in the back-
ground layers where the foreground information was
cut. Alternatively, you could fill in the holes using tex-
ture synthesis methods.

Another fun project would be to create pop-ups auto-
matically from 3D scene descriptions. Pop-up designers
have many special-purpose tools up their sleeves, from
self-assembling tables and cubes to lattices and stacks.
It would be very cool to take a 3D model—say of a car,
teapot, or flamingo—and automatically generate a pop-
up version for 3D, interactive, offline viewing. Even sci-
entific visualizations could be done this way. The
advantage is that we can make the pieces available on
any image medium, from a printed journal to the Web.
Then someone just prints them out, assembles them,
and enjoys the view.

It would be interesting to automatically incorporate
forced-perspective illusions onto the planes to give the
card an even richer illusion of depth.

I’d also like to add support for nonrigid constructions,
such as curved folds and pressure forces. For example,
in Figure 1b of last issue’s column, I showed a moving
card I designed where I made three V-folds with holes
cut through them. As the card opened and the V-folds
rose, they pulled up a floating layer that passed through
them. There’s no direct mechanism here that causes this
to happen; it’s just that there’s nowhere else for the float-
ing layer to go, so it must rise up with the V-folds them-
selves. There are many such possibilities, and it would
be nice to provide them to the designer.

I’d like to flesh out my program with some of the other
special-purpose pop-up mechanisms, such as pulleys,
Venetian blinds, cylinders and cubes, and other uncom-
mon but useful constructions.

Finally, I’d like to bundle up my design system into a
plug-in for a commercial modeling package. That way
people could use systems they’re already familiar with
and use all the tools they already know for modeling,
texturing, lighting, rendering, and so on.

I think that these are all rich research topics full of juicy
pieces of geometry, optimization, segmentation, and inter-
face esign. I encourage you to play around with this excit-
ing new form of graphics output technology. �
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