
Secrets are sensitive things. The more people you tell,
the less your secret is secure. So usually we try to

control the spread of secrets as much as possible. In the
November/December 2001 issue of IEEE Computer
Graphics and Applications, I discussed a radically new
way to keep secrets using the techniques of quantum
cryptography. Although it’s a fascinating theory, we
don’t have products yet that implement those princi-
ples. In the meantime, we have to manage with more
traditional techniques.

Of all the ways to share a secret, perhaps the most
dangerous is to write it down on paper in plain language.
That has the advantages of permanence and some
reduction in the need to repeat yourself verbally, but it
runs a big risk: anyone who can get the paper can read
your secret, even years later. If you think someone is
going to see your document and use it against you,
you’ve got to destroy the paper before they get to it.

Then, however, you have another problem, which is
how best to destroy the paper. If the secret is important
enough that you need to protect it, probably the best
course is to burn the page, and then if you’re really wor-
ried, scatter the ashes. If for some reason you can’t burn
it, instead you could try ripping it up into tiny pieces.
But that doesn’t seem very secure.

In recent years, manufacturers have begun offering
devices known as document shredders. Two major cat-
egories of these machines exist: strip cutters and cross
cutters (also known as confetti cutters). Both look like
tall garbage cans with a mechanical unit on the top into
which you feed sheets of paper.

The strip cutters slice pages into parallel strips, usu-
ally ranging from 0.25 to 0.125 inch wide. Because the
pages are usually fed in short side first, an American
legal-sized page results in 34 to 68 strips, each 11 inch-
es long. The cross cutters add another step by cutting
each of these strips into shorter segments, typically
between 1.25 and 1.5 inches long. These devices have
become very popular in recent years for destroying doc-
uments. (Enron, anyone?)

It seems unlikely to me that those strips couldn’t be
reassembled. I thought in this column I’d investigate
how to assemble strip-cut documents back together.

The tools that solve this problem can also address a
more general problem. Given a collection of pieces that
are arbitrarily sized, have images on them, and are pre-

sumed to fit together to make one or more larger images,
can we assemble the pieces into these larger images? In
the case of shredded documents, the pieces are vertical
strips of paper containing pages of text. Other applica-
tions include repairing a broken object that shattered or
assembling a jigsaw puzzle. Let’s see how we might go
about reconstructing the text.

Getting started
It’s hard to assemble a lot of pieces at once, so I put the

pieces together two at a time. In other words, I’ll grow the
reconstruction by first combining two pieces that belong
together, then combining two more, and so on.

We should ask two questions any time we test objects
pairwise. First, do we have two objects that are likely to
be matches? Second, do they indeed match? The first
question is important for reasons of efficiency, while the
second is necessary to get a good assembly.

To get a handle on typical numbers, suppose you’re
recovering a bag of strip-cut documents. Each 8.5-inch
wide page will have been sliced into 68 0.125-inch strips.
In practice, the left and right margins of each page are
generally about 1.25 inches. If we eliminate these all-
white strips, then we have 6 inches of printed width, or
48 strips per page. So if someone shredded 2,000 pages,
there would be about 96,000 strips, which often all go
into a single bag below the shredder and get thrown
away en masse. In contrast, jigsaw puzzles seem to max
out at about 1,000 pieces.

So if we were to compare every jigsaw piece to every
other piece (each piece generally has four sides), that’s
4(N2) tests, which for N = 1,000 is about 4 million tests.
The shredder problem has only two edges to test per
strip, so we’d require 2(N2) tests, which for N = 96,000
strips is somewhat more than 18 billion. That’s going to
be a tough order, even on supercomputers. Hence, the
efficiency question is important so that we’re not wasting
time comparing pieces that have no chance of matching.

A good matching test is important to ensure that
pieces correctly combine. It needs to be efficient because
this is where the program will spend most of its time. It
also needs to look for a good match, but be tolerant of
near matches. When a razor slices a page, or a jigsaw or
other cutter makes puzzle pieces, the material directly
under the blade is naturally lost, so the remaining two
sides won’t fit perfectly. Furthermore, borders and edges

Andrew
Glassner

0272-1716/02/$17.00 © 2002 IEEE

Putting the Pieces Together __________________________

Andrew Glassner’s Notebook
http://www.glassner.com

76 May/June 2002

are common features, and they might align with the
piece edges, making features even more difficult to
detect. This is often the case for text. Consider a letter
like a capital I, or lowercase l. These both have most of
their information in a vertical line, aligned to the long
side of the page. If the shredding machine cuts just to
the left of one of these letters, there will be nothing
shared between the two strips over this border. In fact,
much printed text is this way: two strips that started out
adjacent have frequent regions where corresponding
regions of the two strips are opposite in color—one edge
is black and the other is white. Thus, our matching test
must pick up on what similarities are available and not
overly penalize mismatches. These are contradictory
desires, of course, which is what makes matching func-
tions so interesting.

For simplicity, I’ll first stick to the document recon-
struction problem where the pieces are strips. Later we’ll
see that the ideas generalize to jigsaw and other shapes.

Although my original inspiration was to reassemble
text documents, I quickly found that visually checking
the reconstructions was tedious, and it was hard to spot
where a misplaced strip should have gone.

To make things easier, I used two sets of photographs
to develop my reconstruction software. Figure 1 is what
I call the thin set, made of four images each that are
about two-thirds as wide as they are tall. Figure 2 show
the wide set, where each image is about twice as wide as
the thin images. I’ll use these images for the following
discussions.

Got a match?
To judge the fit between two strips, I run them

through a fitness function to compute a score. I coded
things so that the score indicates the degree of mis-

match. Thus, the higher the score, the worse the match
is between the pieces. The ideal matching function
would evaluate to zero for any two strips that were sup-
posed to be adjacent and to infinity for all other pairs.

The principle at work here is coherence. In this con-
text, coherence says that we’re betting that any given
column of pixels in an image is going to be a lot like the
columns immediately to its left and right. After all, if the
images were random noise (that is, just black and white
dots with no features), then matching up strips would be
hopeless because statistically no pair of strips would be
any better than any other pair.

The most obvious place to start is to compare the RGB
values of adjacent pixels over the edge and add them
up. If we have two pixels P0 and P1 with colors (r0, g0, b0)
and (r1, g1, b1), then we can find their simple difference
(which I’ll call D0) by summing up the absolute values of
their differences:

D0 =∆ r + ∆ g + ∆ b

where

∆ r = |r0−r1|, ∆ g = |g0−g1|, ∆ b = |b0−b1|

Let’s see how well this metric works. I’ll take the four
thin images, cut them into 40 strips each, and random-
ly scramble them. Now let’s try to find the piece that best
fits the right-hand side of the left-most strip from Mayan
monument image. Looking through the scrambled
pieces, I find that the left-most strip of this image was
assigned strip number 69 and that the strip that was
originally to its right became strip 27. So I’ll place each
strip to the right of strip 69, compute its score using D0,
and see if strip 27 has the lowest score.

IEEE Computer Graphics and Applications 77

1 Test images
for the thin
figure set.
(a) Gas sign,
(b) turtle lamp,
(c) rocket
(NASA), and
(d) Mayan
monument.

(a) (b) (c) (d)

(a) (b) (c) (d)

2 Test images for the wide figure set. (a) Earth (NASA), (b) garden, (c) musical corner, and (d) outdoor concert.

Figure 3a shows the result. The scores range from a
low of 28,516 for strip 27 to a high score of 442,850.
Number 27 seems to stand out, but perhaps we can
improve the data. In Figure 3b, I’ve plotted the inverse
of Figure 3a (that is, each value x is replaced by 1/x).
This looks great, and strip 27 sure stands out, so we’re
off to a good start. The ratio between the highest value
in the inverse plot to the lowest value is about 16—let’s
see if we can improve that.

Consider the real world for a moment. Paper has vari-
ations, and scanners are noisy. We’d like to avoid penal-
izing little imperfections caused by dust and scratches
and printing technology, where one dot might be just
slightly darker or lighter than another. So I’ll add anoth-
er step to the test function: a threshold. If the difference
between two color values is less than the threshold T,
I’ll set it to zero:

and similarly for ∆gT and ∆bT. The result is a new, thresh-
olded metric D1:

D1 =∆rT + ∆gT + ∆bT

Figure 4a shows the result. The scores range from a low
of 21,621 for strip 27, to a high score of 442,648. Figure
4b shows the inverse function. Here I used the same value
of 10 for the three thresholds Tr, Tg, and Tb. The noise
seems to have settled down a little in the inverse plot,
which makes the spike at 27 even easier to find. The ratio

between that highest spike to the smallest value in the
plot is about 20, which is a nice improvement.

So far I’ve been treating the three color components
equally. In the case of a black-and-white document, like
type on paper, that’s pretty reasonable. But when it
comes to images, we know that we’re more sensitive to
some colors than others. This perceptual quirk won’t
generally help us put together photographs of the nat-
ural world, but I think it might help us with man-made
environments and rendered creations like paintings and
computer graphics. My hypothesis is that because
artists are using the same visual system as their audi-
ence, they tend to create works tailored to that system.
For example, we’re more sensitive to variations in
greens than in blues, so there might be more informa-
tion packed into the green part of a painting than the
blue parts.

I encoded this observation into a metric D2 that
weights the three color components individually.
Including the thresholded colors as before, metric D2 is
given by

D2 = wr ∆ rT + wg ∆ gT + wb ∆ bT

where I used weights from the standard luminance func-
tion: wr=0.3, wg=0.59, wb=0.11.

Figure 5a shows the result. The scores range from a
low of 6,217 for strip 27 to a high score of 142,072.
Figure 5b shows the inverse function. This modification
hasn’t made a big change in this data, but we’ve had a
slight improvement on the ratio to about 23. In my expe-
rience, this color weighting can lead to a slight improve-
ment for color images.

∆ ∆

∆
r

r T

r
T r= <

if 0
else

Andrew Glassner’s Notebook

78 May/June 2002

25 50 75 100 125 150

100,000

200,000

300,000

400,000

25 50 75 100 125 150

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

(a)

(b)

25 50 75 100 125 150

100,000

200,000

300,000

400,000

25 50 75 100 125 150

0.00002

0.00003

0.00004

(a)

(b)

3 Looking for strip 27 using metric D0. (a) The scores
using D0 and (b) the inverse of Figure 3a. The ratio of
the spike to the minimum value is about 16.

4 Looking for strip 27 using metric D1. (a) The scores
using D1 and (b) the inverse of Figure 4a. The ratio of
the spike to the minimum value is about 20.

Remember that our goal is to make the spike for slice
27 as unambiguous as possible. A useful way to crank
up differences in data is through exponentiation. This
leads to a third metric, D3:

Figure 6a shows the results when I used the same
value of 2 for all three exponents: nr = ng = nb = 2. The
scores range from a low of 35,000 for strip 27 to a high
score of about 23 million. Figure 6b shows the inverse
function. The spike now is nearly impossible to miss. The
ratio of the spike’s value to the minimum value in the
plot is about 64. Experiments with text and color images

have led me to settle on D3 for my testing function. On
each run, though, I have the opportunity to tweak all
the variables, weights, thresholds, and exponents to
accommodate the peculiarities of different printers,
scanners, paper types, and so forth.

To see how this metric performs on a larger problem,
Figure 7a shows the scores resulting from slicing all four
images into 10 strips each and then comparing every
pair. Figure 7b contains the inverse plot, which shows
the spikes pretty well. Those spikes are where the met-
ric says the two pieces match up well. In Figure 7c, I
processed the inverse data so that any values below a
threshold set halfway between the average and the
largest value are set to zero and the others are set to one.

 D w r w g w br
T n

g
T n

b
T nr g b

3 = + +() () ()∆ ∆ ∆

IEEE Computer Graphics and Applications 79

25 50 75 100 125 150

20,000

40,000

60,000

80,000

100,000

120,000

140,000

25 50 75 100 125 150

0.00004

0.00006

0.00008

0.0001

0.00012

(a)

(b)

25 50 75 100 125 150

2×107

1.5×107

1×107

5×106

2×10−6

2.5×10−6

1.5×10−6

1×10−6

5×10−7

25 50 75 100 125 150

(a)

(b)

5 Looking for strip 27 using metric D2. (a) The scores
using D2 and (b) the inverse of Figure 5a. The ratio of
the spike to the minimum value is about 23.

6 Looking for strip 27 using metric D3. (a) The scores
using D3 and (b) the inverse of Figure 6a. The ratio of
the spike to the minimum value is about 64.

(a) (b) (c)

7 Comparing the four thin images after being cut into 10 strips each, using metric D3. (a) The output of the metric, (b) the inverse of
Figure 7a, and (c) a thresholded and normalized version of Figure 7b.

This basically pushes all the noise to zero and leaves just
the spikes.

Figure 8 shows the same data for the wide data set.
Some of the spikes are in the same place as in Figure 7
because I used the same random number seed for shuf-
fling the strips in both figures.

If we could afford to run this metric on all the data-
base objects, it would suggest an easy way to get a good
initial match. Compute all the pairings and then
threshold the result until the correct number of match-
es remains. For example, when we have four images of

10 strips each, we can find 36 good pairings. We need
only 36 rather than 40 because four of these pairs just
connect up the edges of unconnected pages, and
because their order doesn’t matter, we don’t have to
worry about them.

Just thresholding the pairing data and connecting the
strips wouldn’t always solve the problem perfectly
because that process ignores important issues. For
example, we must ensure that no strip is a neighbor to
itself and that we don’t accidentally make cycles of
strips. I’ll talk about these issues more in a bit.

Andrew Glassner’s Notebook

80 May/June 2002

(a) (b) (c)

8 Comparing the four wide images after being cut into 10 strips each, using metric D3. (a) The output of the metric, (b) the inverse of
Figure 8a, and (c) a thresholded and normalized version of Figure 8b.

9 The unorganized strips associated
with the thin data set. (a) Five strips
per image, (b) 10 strips per image, (c)
20 strips per image, (d) 40 strips per
image, and (e) 80 strips per image.

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

10 The unorganized strips associated with the wide data set. (a) Five
strips per image, (b) 10 strips per image, (c) 20 strips per image, (d) 40
strips per image, and (e) 80 strips per image.

An orderly development
Let’s suppose that we had access to the entire grid of

all pairings, like that of Figures 7 and 8. How might we
use this data to assemble the pieces?

In this section I’ll describe my first approach to assem-
bly, which does a good, but not great, job. It points the
way to a better solution, though.

Let’s begin by looking at the input. Figure 9 shows the
thin image set after it has been sliced into several strips.
Note that there’s no obvious correlation between the
strips—they look as though they’d been fished out of
wastebasket and scanned in randomly. One thing we do
know is which way is up. (I’ll talk about handling
unknown orientation later.) Figure 10 shows the wide
data set, in the same initial condition.

Let’s randomly pick one strip, and then try to assem-
ble it by adding to its right side using a greedy technique.
So given this strip, we’ll consult the database of scores,
find the strip that is the best right-hand neighbor, and
place that down. Then we’ll get the best right neighbor
for that strip, working our way from left to right, until
we’ve finally placed them all.

Figure 11 shows the result for several different strips
in the thin data set, and Figure 12 shows the results for
the wide data set. The good news is that we’ve reduced
the chaos of unrelated strips into a few large chunks
(and some smaller ones). But the images aren’t quite
assembled the way we’d like. Curiously, the number of

strips involved changes the result but not the general
feel of the errors. What went wrong?

As long as we’re working our way to the right in a
given image, generally the pieces go together well. But
then when we hit the right edge of the picture, the best
remaining strip to its right is essentially a random
choice. From that point on we continue to the right
again, until we either hit the right side of the image, or
need a strip that’s already been used. Then we start
again. Thus we end up getting chunks of images that get
smaller as we work to the right.

Let’s see what happens if we start off with a better
choice. Before we put down the first piece, we’ll look
through all the strips and find the one that has the worse
match on its left side. The idea is that whatever strip has
no good left neighbors is probably the left edge of an
image.

Figure 13 (next page) shows the result of this change
for the thin test cases. This is encouraging but still not
quite right. Figure 14 (next page) shows the result for
the wide test cases. We still sometimes start at the wrong
place, because the piece with the worst left neighbor, as
determined by the scoring function D3, isn’t always at
the image’s left edge. Sometimes there’s another strip
somewhere in the database whose right edge just hap-
pens to match the left edge of an image pretty well, so
the piece we end up with isn’t really what we wanted.

As I thought about it more, I realized that this left-

IEEE Computer Graphics and Applications 81

11 The result of starting with a ran-
dom strip and building to the right for
the thin data set. (a) Five strips per
image, (b) 10 strips per image, (c) 20
strips per image, (d) 40 strips per
image, and (e) 80 strips per image.

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

12 The result of starting with a random strip and building to the right for
the wide data set. (a) Five strips per image, (b) 10 strips per image. (c) 20
strips per image, (d) 40 strips per image, and (e) 80 strips per image.

to-right growing approach could be endlessly tweaked,
but was probably doomed in the long run. One big prob-
lem is that it requires access to all the pairing data,
which for a large data set will be prohibitive. But even
with this information, there’s still an essential problem:
as we march along, looking for the best match to a given
piece, we might end up selecting a piece that has a real-
ly terrific match somewhere else and then that piece is
over. For example, suppose that by coincidence some
strip in the middle of the gas sign image nicely matched
a strip in the middle of the rocket image. When we place
the gas sign strip down in the middle of the rocket
image, we’ve just ruined our chance to get either of
those images right.

Faced with these difficulties, I decided to shift gears
and try a clustering approach.

Clustering
To cut down on errors, then, I created a clustering

algorithm. Suppose we have four pieces, which I’ll call
A, B, C, and D, and when correctly assembled they’re
in order as ABCD. Now suppose that the match
between C and D is excellent but the match between A
and B isn’t. When we’ve placed A, we look through the
remaining pieces. We might find that piece D is the
best match for the right side of A. However, best in this
case might mean nothing more than the least worst. Of

course, the computer has no way of knowing that, so
it picks D and places it next to A. The shame here is
that this now removes the possibility of ever getting
the CD pairing, which had a very low score.

This is a common problem with all greedy algorithms
and philosophies. By doing what’s most expeditious at
the moment, we can eliminate the opportunity to do
something better later.

So instead, let’s take a clustering approach. Here’s the
basic idea behind clustering: if C and D have a really low
score, let’s put them together first. Then we’ll deal with
the other pieces.

So assuming again for the moment that we have
access to the entire database of scores for every pair of
pieces, we could first put together the two pieces with
the lowest score, then the next two, and so on, until
every piece has been placed.

This algorithm works beautifully once you take care
of an important gotcha—you can’t make cycles. As an
example, I’ll reuse our ABCD, but to make the discus-
sion clearer, I’ll indicate each pairing with subscripts.
Thus we have one score for when the right side of A
abuts the left side of B, which I’ll write as AR BL and
another score for when the right side of B abuts the
left side of A, which I’ll write as BR AL. Suppose that
the four lowest scores in the database are (in ascend-
ing order) BR DL, DR AL, and AR BL. This would create

Andrew Glassner’s Notebook

82 May/June 2002

13 The result of starting with the
strip with the worst left neighbor and
then building to the right for the thin
data set. (a) Five strips per image, (b)
10 strips per image, (c) 20 strips per
image, (d) 40 strips per image, and
(e) 80 strips per image.

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

14 The result of starting with the strip with the worst left neighbor and
then building to the right for the wide data set. (a) Five strips per image,
(b) 10 strips per image, (c) 20 strips per image, (d) 40 strips per image,
and (e) 80 strips per image.

the cyclic sequence BDA where the right side of A is
linked to the left side of B. Where is C to go? It’s left
out in the cold.

Even worse, if we’re not careful we might find that a
single strip best matches itself. For example, AR AL might
have a really low score if A is just a solid color. Obviously
we can handle that as a special case, but if we prevent
cycles of any size from forming, then single-piece cycles
are prevented as well.

I prevent the formation of cycles with a brute-force
technique. Whenever I want to add a piece at either end
of a cluster, I check the other end to see if that piece is
already there. If so, I skip adding that one in and move
on to the next best pairing. The only exception to this
rule is when all the pieces have been placed—the very
last one will make a single big cycle that contains the
whole database.

To recap, I search the database for the lowest-scored
pair and put those two pieces together. Then I search for
the next lowest pair, assemble those, and so on, until all
the pieces have been placed. Along the way, I make sure
that I don’t create any cycles except when placing the
last piece.

This algorithm works great. Figure 15 shows the result
for the thin data set, and Figure 16 shows the wide data
set. Because the whole reconstruction creates a cycle, it
doesn’t matter which piece you choose as the left-most
one when printing them out—in effect the printout is a
tube. But because it’s nicer to start on a boundary, I
search the entire chain, after it’s been completely assem-
bled, for the worst score between two neighboring
pieces, on the assumption that this spot is likely to be a
border. When I create the output image, I use the strip
to the right of that border as my starting point.

Sorting it out
The data sets in the last examples had at most a few

hundred strips. Suppose that we had a few thousand
strips, or even a few more orders of magnitude? As I
discussed earlier, computing and storing all the pair-
wise scores demands resources proportional to the
square of the number of pieces, and that’s a number
that grows quickly.

To work with large data sets I scanned in the PDF pages
of text from my column on quantum computing. I didn’t
use the published pages with the figures on them because
I wanted to simulate the kind of text-only documents
people shred in offices. There were 51 pages in all, with
text in the middle six inches of the page, giving me 306
inches of text. Cutting those pages into 0.125-inch wide
strips gave me 2,448 strips to reassemble, which I call
the text data set. Figure 17 (next page) shows a piece of
this data set in its original, random order.

All the pairwise scores for this data set would mean
creating and storing about 6 million scores. The time it
takes to compute D3 for any given pair of strips depends
on the strips’ size and the processor speed, but when you
get into these large numbers all sorts of practical issues
like those involving finite computer memory—which
didn’t matter much before—can become significant.
Although we can imagine handling 6 million scores, if
we had 250 pages to reassemble, that would be 289 mil-
lion scores and things would be getting out of hand by
that point.

My approach was to sort the pieces that had a rea-
sonable likelihood of belonging together into smaller
bins. This is a simple version of a general technique
known as multiresolution processing. Once the pieces
were placed into bins, I could apply the clustering algo-

IEEE Computer Graphics and Applications 83

15 The result
of the clustering
algorithm for
the thin
database.

16 The result of the clustering algorithm for the wide database.

rithm of the last section just to the contents of the bins.
For example, using just 10 bins for the text data set
results in about 244 strips per bin, which is even small-
er than the image-based data sets I used (when each
image was cut into 80 strips, the algorithm had 320
strips to assemble). Those data sets assembled in about
a second on my little home PC using unoptimized code.
If I had 250 pages (or about 12,000 strips) then using
60 bins would let me assemble the entire database in
about a minute.

Note that when a piece goes into a bin, we indicate
whether it’s the left or right edge of the piece that has
landed it there. A piece might appear in more than one
bin if its left side matches one group and its right side
another. Keeping this detail in mind, I’ll just speak of
strips and bins from now on.

The trick to this approach is to ensure that we get the
right pieces into the bins. This is a question of heuris-
tics, or approaches that seem to make sense but might
not have a deep theoretical foundation. Basically I
thought about what tests might be good at picking up
features between strips and tried them.

I experimented with several different sorting heuris-
tics, using all three data sets. My first, and simplest,
approach was to average all the colors along the strip’s
side and take that color’s luminance. I set up as many
bins as I wanted, each holding a range of luminance
from 0 to 1. Because many of the text pieces were near

mid-gray in average intensity, I used
big bins for the brightest and dark-
est ends and smaller ones in the
middle. For example, one bin might
hold all sides with luminance in the
range (0.0, 0.15) while one closer to
the middle of the range might hold
the range (0.45, 0.46). I call this
sorter L, for luminance.

That test works well, but the mid-
dle bins fill up quickly and some-
times close neighbors fall into
different bins. That means that
pieces that should match never get
the chance to see each other. I there-
fore opened up the range of each bin
so that they overlap. For example,
the first two bins might now cover
(0.0, 0.2) and (0.1, 0.3) while a cou-
ple of bins near the middle could
hold (0.445, 0.465) and (0.455,
0.475). A factor f that the user can
set determines how much the bins
overlap. I call this overlapping lumi-
nance sorter Lf.

The sorters L and Lf group text-
based pages based on the density of
black ink to white paper, but they
don’t take into account how the pat-
terns fall on the page. I implement-
ed a run-length metric that tries to
get at some of this information. I
start at the top of the page and count
the lengths of continuous sequences

of the same color. For full-color images such as those in
my previous data sets, this isn’t a useful metric, but it’s
well suited to text. I save the length and color of the
longest run and the arithmetic average of all the runs. I
use these values in different ways to create a few differ-
ent sorters. One useful value comes from multiplying the
longest-run color by its length, taking its luminance, and
dividing by the average run length. As before, I have a
variety of overlapping bins for the result. I call this over-
lapping run-length sorter Rf. In another sorter I use just
the luminance of the color in the longest run, giving me
sorter Sf.

These sorters all have different strengths, and I’m sure
you could cook up any number of additional sorters that
are sensitive to different aspects of the data that you
might be interested in. In practice, I use them all. So each
strip gets run through each sorter and placed into a bin
from that sorter. Then I score all the strips in each bin
for all the sorters.

With that data in hand, I assemble the clusters by
looking first for the lowest scored pair among all the
pairs in all the bins, then the next lowest-scored pair,
and so on. That way if one of the sorters misses out on
connecting two pieces that really belong together, one
of the other sorters has a chance to catch it.

Between these four metrics and the clustering step,
the narrow and wide image sets assembled perfectly.
The text data set went together almost perfectly—out

Andrew Glassner’s Notebook

84 May/June 2002

17 Some of the
2,448 strips
making up the
text-only text
data set.

of 2,480 strips, only 15 strips weren’t
properly matched up on one side or
the other. Figure 18 shows a piece of
the results. The complete output just
looks like a bunch of pages of text
side-by-side, as it should.

Heuristics
A few other heuristics could be

added to this system. For example,
we might know that we were scan-
ning in pages of text on standard
American-sized letter paper.
Printers generally need at least a
half-inch margin on both sides of the
text. If we found that we were mak-
ing a cluster that was more than
about 7.5-inches wide, we could sus-
pect an error and try to find a place
to split it apart.

We could also try to detect, and
weight, specific image features. For
example, many office memos, par-
ticularly involving numbers, have
horizontal and vertical lines and
borders. We could look for such fea-
tures and give them extra weight in
the sorting step.

I mentioned earlier that I assumed
that all the strips were scanned in so
that they’re in the proper orientation. In the case of text,
we could precede the matching process with a step of
optical character recognition (OCR) on the strip in both
its original orientation and after rotating it 180 degrees.
The OCR process tries to recognize letters and is likely to
find better matches in one orientation rather than the
other.

In the case of images, the problem is a little harder. I
haven’t implemented it, but I think that you could get
pretty far by scoring all the strips in both orientations
and then using whichever orientation produced lower
scores overall.

Crosscuts and jigsaw puzzles
So far I’ve only spoken about strips, but the general

approach also works for irregularly shaped pieces.
As I mentioned, some shredding machines cut the

strips into smaller pieces. At first, this may seem to be a
straightforward problem. Just build a few more tables
and match all four sides of the rectangular strips rather
than just the left and right sides.

There’s a problem, though, that results from the fact
that there’s a lot of white space on a page of text. The
top and bottom of many of these crosscut strips will be
white (since that edge will fall between lines of text).
Because these edges are all completely white, they will
have near-perfect scores of zero (or almost zero). Of
course, we can’t just line up these pieces vertically.

My approach is to look for edges that are the same
color, within some threshold. If an edge is a single color
(or almost a single color) then it doesn’t take part in the
matching process. That edge is essentially ignored and

doesn’t influence the scoring, sorting, or clustering
processes.

Using this test, I matched my text data using strip
lengths of 1.25 inches (I simulated cutting each 11-inch
strip into 8 pieces of 1.25 inches each and one piece of
1.5 inches), resulting in 22,032 pieces. I applied the sort-
ing and clustering techniques and got good, but not per-
fect, results. I think a better sorting metric would go a
long way here.

The sorting technique is amenable to the type of mul-
tiresolution methods I mentioned earlier, where you
match things quickly at a coarse level, apply a more
expensive test to refine the collection, then an even more
expensive test, and so on, until you finally apply the most
complete and accurate test only to a few candidates with
a high likelihood of matching. We could certainly use a
sequence of sorting steps, where the first few are crude
and fast and only become more accurate (and slower) as
the number of elements in the ever-smaller bins
becomes tractable.

A fun application of this technique is to solve jigsaw
puzzles. To test this out, I took a photograph and drew
jigsaw-shaped pieces on it in Adobe Photoshop. I then
wrote a program that broke the pieces apart and scat-
tered them. Figure 19 (next page) shows some of the
pieces.

To reconstruct the image, I used my assembly algo-
rithm. I replaced the idea of a strip’s side with the color
values running around the perimeter of one side of the
piece. This 165-piece puzzle, shown in Figure 20 (next
page), assembled perfectly in just a few seconds. This
really surprised me, since I was looking forward to writ-

IEEE Computer Graphics and Applications 85

18 Results of running the multiple-bin sorters on the text data set, followed by clustering.

ing some code to account for the pieces’ shape infor-
mation. Finding a nice characterization of the shapes so

that the algorithm could match them quickly on a pure-
ly geometric basis would be an interesting project.

Putting the pieces together
In this column I’ve overlooked a few practical prob-

lems. When reconstructing a document, sometimes
strips will be missing. Luckily, the clustering algorithm
doesn’t care about that and will just match up pieces as
well as possible. Missing crosscut pieces are more trou-
blesome and will result in irregularly shaped chunks of
the original images.

I’ve also assumed that the pieces fit together without
gaps or overlaps. If a vase shatters on the floor, you often
get tiny little pieces and some dust. The big shards will
fit together, but the joins will be imperfect because of
the lost material. Archaeologists and historians often
have to cope with these kinds of shattered, and possibly
incomplete, artifacts. A great example of this problem
is the Forma Urbia Romae, a shattered marble map of
ancient Rome (see http://graphics.stanford.edu/
projects/forma-urbis). It would be interesting to find
algorithms to reconstruct these objects.

If you’re putting a vase back together again, one thing
that helps is that the vase has some thickness. The
shapes go together not just based on a 2D outline, like a
jigsaw puzzle piece, but also in terms of how the edges
are scalloped and shaped. It would be great to find ways
to take advantage of that information, too. �

Readers may contact Andrew Glassner by email at
andrew@glassner.com.

Andrew Glassner’s Notebook

The exploding popularity of mobile Internet access, third-generation wireless
communication, and wearable and handheld devices have made pervasive
computing a reality. New mobile computing architectures, algorithms,
environments, support services, hardware, and applications are coming online
faster than ever. To help you keep pace, the IEEE Computer Society and IEEE
Communications Society are proud to announce IEEE Pervasive Computing.

This new quarterly magazine aims to advance mobile and ubiquitous
computing by bringing together its various disciplines, including peer-reviewed
articles on

• Hardware technologies
• Software infrastructure
• Real-world sensing and interaction
• Human–computer interaction
• Security, scalability, and privacy

SUBSCRIBE NOW!

http://computer.org/pervasive

NEW FOR 2002

M. Satyanarayanan
Carnegie Mellon Univ. and Intel Research Pittsburgh

Associate EICs

the IEEE Computer & Communications Societies present

IEEE PERVASIVE COMPUTING

Editor in Chief

Roy Want, Intel Research; Tim Kindberg, HP Labs;
Deborah Estrin, UCLA; Gregory Abowd, GeorgiaTech.;

Nigel Davies, Lancaster University and Arizona University

19 Some
pieces of a
jigsaw puzzle.

20 The assem-
bled 165-piece
jigsaw puzzle.

