
Most of the time we work hard to create sharp and
clear images. After all, we make our pictures to

communicate our message as clearly as possible.
Pictures meant for utilitarian purposes should be sim-

ple and direct. For example, if you need to change a pho-
tocopier part, you want the repair diagram to be
uncluttered and comprehensible. There are also pictures
that have a more human purpose, perhaps to help tell a
story. The intention of such images isn’t to convey infor-
mation, but share a sense of mood and feeling. There
are also pictures that are almost all mood. These are
abstract or impressionistic types of images.

We’ve seen computer graphics used for all of these
purposes in recent years, and the styles continue to pro-
liferate. From an early focus on a kind of photorealism,
the kinds of pictures we create with computers have
evolved to embrace a wide variety of styles, some of
which seem to look like traditional media.

Creating images that are deliberately imprecise
images provides another way to express visual ideas.

The technique of successive approximation helps us
see a rough version of a picture quickly, with details fill-
ing in over time. Many rendering systems first create and
display a low-resolution version of an image and then
gradually add in details. If the user doesn’t like the way
the picture is shaping up, he or she can stop the program
and fix things before trying again. This leads to faster
turnaround time than waiting for the complete final
image to render before seeing anything at all.

Successive approximation is also useful when we

want to transmit models or images over low-bandwidth
connections. Most browsers can show GIF images by first
drawing only a small number of scan lines, replicating
each line downward. New lines fit in between the old
ones, slowly building up the image, as in Figure 1. Some
programs that display 3D models use a similar tech-
nique, transmitting a low-resolution version of the
model so that the person on the other end has some-
thing to look at immediately, and then sending more
detail over time.

There are lots of interesting ways to make approxi-
mate images. Here I’ll look at some ways to create
approximate images using relaxation and optimization
techniques.

Approximately right
We can use two general techniques for making

approximate images: transformations and algorithms.
Transformations take an image into another repre-

sentation, operate upon it there, and then turn it back
into an image. The most popular transformations for this
sort of thing are Fourier and wavelet analysis. Using
Fourier methods we can, for example, take a picture, lop
off the high frequencies, and then recreate a new image
from what’s left. The result is often an image that looks
blurrier than the original. Wavelet transforms are simi-
lar. When the higher-order wavelets are removed, the
reconstructed image can look a little blocky, like an
image that has gone through JPEG compression.

Algorithmic techniques encompass just about every-
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1 Four images demonstrating the window shade effect as a browser loads an image in progressive-GIF format.
The scene is a boat dock at the Port of Edmonds, Washington.



thing else. Perhaps the most popular forms of creat-
ing approximate images algorithmically use blur and
pixellation.

Blur is pretty simple—just take an image and smooth
it. Every image-processing program has some form of
blur filter built into it. Figure 2a shows an image, and
Figure 2b shows a blurry version. Pixellation involves
creating a grid of large blocks over the image, and filling
in each block with the average color of the image
beneath it, as in Figure 2c. This technique is used in tele-
vision and video to obscure details such as faces and
license plate numbers.

We can create approximate images in other ways.
Most image-editing programs contain a wealth of built-
in filters to apply special effects to images, and several
companies sell packages of additional filters as plug-ins.
Some of these filters are simple and run with a single
touch of a button, while others are complex with many
user-interface controls.

An interesting approach to creating an approximate
image was presented in a 1990 paper by Paul Haelberli
(see the “Further Reading” sidebar for details). Among
other approaches, he mentioned using “relaxation” to cre-
ate an image and showed two example images. Although
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Further Reading
The original inspiration for this column came

from a couple of pictures at the end of the paper
“Paint by Numbers: Abstract Image Representa-
tions,” by Paul E. Haeberli.1 Those figures show a
picture of a man sitting in a chair approximated
by relaxed boxes and a woman standing up
approximated by a relaxed Voronoi diagram.

Adobe’s Photoshop has a built-in filter called
Crystallize that appears to build a Voronoi
diagram and then colors each cell with the
average color under the cell. The filter doesn’t
seem to make any use of image information to
place the points, and some cells have curiously
soft or blurry boundaries.

One of the first papers to present a nice way
to get nonphotorealistic filters to work across
animated sequences is “Painterly Rendering for
Animation” by Barbara J. Meier.2

Many excellent filters exist for both still and
moving images. Some filters use image-
processing techniques to track the changes
between frames and minimize the boiling effect
when the geometry maneuvers to accomodate
the new image. For example, some of the filters
created by RE:Vision Effects for the film What
Dreams May Come (which are now available
commercially) work this way.

Writing an efficient and stable program to
compute Voronoi diagrams is no picnic. Rather
than starting from scratch, I recommend
building on C language source code written by
Steve Fortune of Bell Labs, which he has made
available at http://cm.bell-labs.com/who/sjf/.
You can also find code for computing Voronoi
diagrams and many other algorithms at the
Computational Geometry Algorithms Library
(CGAL) at http://www.cgal.org/.
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2 Blurring and pixellation. (a) A street scene in
Edmonds, Washington. (b) A blurred version. (c) A
pixellated version.
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that paper doesn’t discuss how the pictures were made,
relaxation is a well-known method for optimization, so
it’s not hard to guess what he was up to. In the next section
I’ll talk about writing a simple optimizer and then present
the results of using that system with a variety of geomet-
ric elements to make approximate images.

Around the loop
Depending on the complexity of the problem you

want to solve and the sophistication of your solution,
writing an optimization program can mean a few hours
of low-stress programming or become a life’s work. Of
course, for this column I’ll take the former approach.
Specifically, I’ll look at what’s sometimes called a
random-walk relaxation routine.

The general idea behind this kind of program is that
we have two basic creatures: a piece of data called a
candidate and a routine that evaluates a fitness func-
tion. The fitness function looks at the candidate and
assigns it a numerical score. Typically a fitness func-
tion will assign a higher score to a better candidate
than to a less one. Thus, we want to maximize the score
for maximum fitness.

If instead a better candidate gets a lower score, the fit-
ness function is sometimes called a penalty function,
because we want to minimize the penalty.

In this column, our candidates will be collections of
flatly colored geometric objects that we’ll distribute over
the original picture to create a new image. The fitness
function will measure the total error in color space.
Since we want this error to be as small as possible, this
is technically a penalty function.

The process will be to generate an initial candidate,
which I’ll call the best candidate, and score it. Then I’ll
generate another candidate by randomly perturbing the
best candidate, which just means changing it in some
way. If the new candidate has a worse score than its pre-
decessor, we throw it away. If its score is better, then it
becomes the new best candidate. Then we perturb and
score again. Many tests exist for determining when to
stop this loop, which I’ll discuss a little later.

Because I wanted to try out a bunch of different
geometries, each with their own descriptions and para-
meters, I thought it would be easiest to write a general-
purpose routine to control the optimizing process.

One step at a time
This project is a natural for class-oriented program-

ming languages like C++, though using function point-
ers you can write it up in other languages as well. For
the little fragments of pseudocode in this article, I’ll use
traditional C-style notation.

Each type of candidate is implemented by exposing
four functions to the system. For simplicity’s sake I’ll
abstract them here by ignoring the important but cum-
bersome details of bookkeeping, memory management,
error-checking, and so on. Of course in any real system
you’ll need to manage those issues, but they’re not cen-
tral to the ideas of the algorithm. The four functions are

� Candidate init(). Called before the optimizer runs,
this sets up any required storage, and generates and
returns the first candidate.

� Candidate perturb(Candidate c). Perturb the input and
return the perturbed version.

� double score(Candidate c). Compute the penalty score
for this candidate.

� void save(Candidate c). Save the image specified by
this candidate.

Figure 3 shows the basic loop of the perturbation algo-
rithm. I’ll assume that we’ve already initialized the
geometry (giving us the original best candidate) and
scored it (giving us the original best score). The basic
idea is that the routine takes as input pointers to the cur-
rent best score and candidate, as well as a structure with
the procedures for the current type of geometry. On line
3 we perturb the input candidate to create a new candi-
date, and on line 4 we get its score. If the score is better
than the best score we have so far, then we save the new
candidate, put its score into the pointer for the score,
and reassign the candidate pointer to the new structure.
Then we return the candidate pointer. If the new ver-
sion wasn’t any better than what we had before, that
pointer and the score will be unchanged. Otherwise
they’ll both have the new values.

When I save a candidate, I simply write out the image
file that it describes.

The procedures that get called aren’t hard-wired into
the loop but get looked up on the fly through pointers
in the structure that holds them. That makes it easy to
write up and plug in new types of candidates: just fill
the structure and the program runs as before, except it
calls the new routines.

Note that in C a procedure can only return one value,
and this routine might need to change two things—the
score and the pointer to the best candidate. To manage
that in this pseudocode, I passed in the current score as
a pointer, so that the routine could change its value. In
real code you’d want a more elegant solution.

Scoring
Coming up with a score is the fitness function’s job. For

this column I started with a simple function that took two
inputs: the candidate image (cImage) and the reference
image (rImage). The cImage is the rendered image pro-
duced by the geometry in the candidate, and the rImage
is the original picture that we’re trying to approximate.
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1. Candidate PerturbStep(double *bestScore,

Candidate bestC, Procs procs)

2. {

3. Candidate newC = procs->perturb(bestC);

4. double newScore = procs->score(newC);

5. if (newScore < *bestScore) {

6. procs->save(newC);

7. bestC = newC;

8. *bestScore = newScore;

9. }

10. return(bestC);

11. }

3 Pseudocode for the basic perturbation routine.



My first metric was to run through all the pixels and
compute the squared difference in each color compo-
nent. If ∆r is the difference between the red values in
the two pictures, then the error at each pixel is 
Ep = ∆r2 + ∆g2 + ∆b2. The total error is the result of sum-
ming up this measure for all pixels in the image. I square
the values so that they’ll always be positive, and big dif-
ferences will count for more than smaller differences.

This worked pretty well at capturing big blocks of
color, but it has no special preference for preserving
edges, which are visually important. It also doesn’t let
the image creator influence the process. I decided to add
a simple importance measure to the error metric. When
you start the program, you have the option of supplying
an importance image (iImage) of the same size as
rImage. You can also supply an overall scale factor s,
which scales to the entire importance image. Writing I
for the value of iImage at a specific pixel (scaled to the
range [0,1]), the importance-weighted error is Ei = sI Ep.
This means that pixels that have been painted white (or
assigned a high importance) contribute more to the final
score. For the figures in this column, I typically painted
white around important edges and places where I felt
details were important. Figure 4 shows an image with
its hand-drawn importance image.

If you don’t want to exercise personal control over the
algorithm but would like to encourage it to preserve
regions of high contrast, you could write a program to
find edges in the original image and create an importance
image where pixels near edges are shaded from black to
white proportionally to the strength of their edge.

In addition to the importance-weighted color differ-
ences, I’ve included two more measures in my scoring
function. The first is an overlap penalty. I count how many
times a given pixel is written to over the course of ren-
dering the image. Let’s call this counter c. If c>1, I multi-
ply the excess by an overlap penalty value Po and add that
in to the total error. That is, I add in a value (c − 1)Po,
where Po is a constant for the whole image. The larger the
overlap value, the more the pieces will be penalized for
landing on top of each other. Similarly, I include a gap
penalty. If a given pixel has a count value c = 0, then I add
to the score the value of a gap penalty value Pg, which
again is constant for the whole image. The idea here is to
try to get all the pixels covered by at least one object, so
that most of the background is covered.

Perturbing
The perturbation routine for each type of geometry

is different. For example, circles change their center
and radius, boxes change their length and angle, and
so on. But a few things are common to all the pertur-
bation routines.

Each candidate is a list of geometric objects: dots,
boxes, and so on. The rendering algorithm draws these
in order into a blank image, so that in effect they’re ren-
dered back to front.

When we call a perturbation routine, it first throws a
random number. If that number is above a threshold,
the routine swaps a random pair of objects and returns.
So none of the shapes change, but their order is altered.
I set the swap probability and leave it unchanged

throughout the entire run. Generally I put the thresh-
old at around .9 or .95, so pieces get swapped about one
out of every 10 or 20 calls to the routine.

If there’s no swap, the routine picks a piece and
changes it. Because I don’t want to pick pieces in the same
order every time, when the perturb routine is called for
the first time I create a permutation array (let’s call it P).
P is an array of integers that has as many entries as there
are pieces of geometry (let’s call that number L), which I
initialize so that each Pi = i. Then I run through the array
and for each element, I choose another element and swap
them. That means that every element will get swapped
at least once, and probably some will get swapped many
times. The result is that the array still holds the numbers
0 through L − 1, but in scrambled order.

I then set a counter (which is persistent to the rou-
tine) to 0. The first time I enter the perturb routine, I
choose the element from the list that corresponds to the
value of P0. The next time it’s P1, then P2, and so on. I
just keep bumping the counter each time. When the
counter hits L, I rebuild the array and start the counter
again at 0. This way the pieces get modified in a random
order, but no pieces get skipped.

Now that we’ve selected a piece of geometry to mod-
ify, we need to decide what to do with it. Each piece of
geometry has its own data. A circle has a center and
radius, a triangle has three points, and so on. We usual-
ly want these values to vary a lot in the beginning sim-
ulation steps so that objects can try many different
places to land and see how well they contribute there. As
the simulation continues, the changes get smaller as
pieces jostle into their best settings.

I manage this with a simple linear transition. I set a
scale factor for the start of the simulation and one for
the end. Because I know how many steps I’m going to
take before I begin, I just interpolate based on the cur-
rent step to come up with a current scaling factor. For
example, I might say that the radius of a circle can
change by up to ± 40 pixels at the start of the run, but
only up to ± 5 pixels by the end.

In a more sophisticated technique, you might want to
run the simulator until the changes become very small
and save the result. Then reset the change factor to its
maximum value and try again. This way the system can
explore a variety of different starting conditions and fol-
low each one to its best conclusion.

Toucan play that game
Let’s look at a bunch of different geometric objects
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4 (a) An image of a toucan. (US Fish and Wildlife
Service/photo by Mike Lockart.) (b) The hand-drawn
importance image. White means most important, black
means least.

(a) (b)



applied to an image of a toucan. This is a good test image
because it has just a few regions of consistent color, a
few details, and sharp, high-contrast edges. Figure 4a is
the original, and the important image is Figure 4b.

In each of the following techniques, I create an image
from a candidate by starting off with a solid field that’s
set to the average color of the entire original image, and
then add regions of constant color to it.

In each method except for the first two, I made the
images with 144 geometric elements and 25,000 steps
of relaxation (of course, not every step of relaxation was
accepted by the optimizer as an improvement). The orig-
inal formation was a 12-by-12 regular grid of elements
of identical shape and size.

Scale boxes
I’ll start off with two approximations that aren’t real-

ly generated by relaxation, but they give us a nice start-
ing point.

Suppose that in the original picture you try to find the
best location to place a box of a given side length. That
is, you center the box on every pixel of the image and
determine whether it overlaps any other boxes. If it
doesn’t, then compute the error you’d have if you
replaced all the pixels under the box by their average
color. Repeat this for every possible location.

When you’re done, you’ll either have found that you
can’t place the box anywhere, or you’ll have the location
of the box that introduces the least error.

If you found a spot for the box, add it to the list of boxes,
creating the newly “perturbed” candidate, and return it.
If you couldn’t place the box, decrease the side length by
a given fraction and start again. Repeat the process until
the box’s side falls below some minimum size.

Figure 5 shows the result. In this example, the boxes

started with a side length of 1/10 the length of the small-
er dimension of the image and continued until they were
10 pixels on a side. My system was able to squeeze in
102 boxes until they got too small.

Scale dots
The approximation of scaled boxes in Figure 5 isn’t

much to write home about. What if we replace the boxes
with dots? Then the dot’s diameter replaces the box’s
side lengths. Figure 6 shows the result, using the same
sizes for the radius as for the boxes in the previous fig-
ure. I stopped the run when it packed in 144 dots
because all the other simulations use 144 elements and
I didn’t want this one using more.

This image also isn’t that much to cheer about. Let’s
see if we can improve things by including relaxation into
the process.

Dots
As with all the examples to follow, I’ll begin with 144

elements laid out on a regular grid, as in Figure 7a.
Because we’re using dots, each element is described

by three numbers–one each for the x and y coordinates
of the center and one for the radius. Each step of the per-
turbation either swapped two dots or changed the cen-
ter and radius of one of them.

The rest of Figure 7 shows the original dots and the
results after 6,000, 12,000, 18,000, and 25,000 steps,
respectively. By the last image, the system had accepted
a new candidate 1,093 times. So that you can better see
the way the dots are stacked, I’ve also provided a ver-
sion of each figure where the dots are outlined.

Half dots
Dots look pretty good. What if we instead used half
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6 The 144 dots
produced by
the scaling-dot
algorithm for
the toucan
image.

7 Using relaxed dots to approximate the toucan. For each image, the first number for each part refers to how
many steps the algorithm took to produce that picture. The second number identifies how many times a new
candidate replaced an old one since the start of the run. (a) The original 12 × 12 grid of dots. (b) 6,000 / 485. (c)
12,000 / 680. (d) 18,000 / 834. (e) 25,000 / 1,093. (f–j) Figures 7a through 7e with outlines.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

5 The 102
boxes produced
by the scaling-
box algorithm
for the toucan
image.



dots? These have a center and radius but also a fourth
number: an angle that locates a diameter through the dot.
Only pixels on that diameter’s positive side get drawn.

Figure 8 shows the results. After 25,000 steps there
were 1,242 steps of improvement. Note that the little
pointy bits of the half-dots are useful for filling in crevices.

Boxes
Let’s use boxes as our geometric elements. An easy

way to define a box is with five numbers that specify its
center, width, height, and an angle of rotation about its

center. Whenever it’s time to perturb a box, all these
parameters get tweaked.

Figure 9 shows the results. After 25,000 steps, there
were 602 steps of improvement.

Triangles
It’s a small step from boxes to triangles. A triangle is

described by six numbers, corresponding to the loca-
tions of each of its three vertices.

Figure 10a shows the results. After 25,000 steps, there
were 1,412 steps of improvement.
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8 Using relaxed half dots to approximate the toucan. (a) The original 12 × 12 grid of half dots. (b) 6,000 / 670. 
(c) 12,000 / 844. (d) 18,000 /1,026. (e) 25,000 / 1,242. (f–j) Figures 8a through 8e with outlines.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

9 Using boxes to approximate the toucan. (a) The original 12 × 12 grid. (b) 6,000 / 228. (c) 12,000 / 318. 
(d) 18,000 / 435. (e) 25,000 / 602. (f–j) Figures 9a through 9e with outlines.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

10 Using triangles to approximate the toucan. (a) The original 12 × 12 grid of triangles. (b) 6,000 / 635. 
(c) 12,000 / 882. (d) 18,000 / 1,079. (e) 25,000 / 1,412. (f–j) Figures 10 through 10e with outlines.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)



Mesh
Rather than letting the triangles roam free, let’s tie

them down to a mesh, like that of Figure 11a. The relax-
er will then just move around the inner vertices of the
mesh (the vertices on the border will remain fixed). My
perturbation procedure starts with a hexagon made of
the points’ nearest neighbors, as Figure 11b shows. To
move a vertex, I randomly select an adjacent pair of
these neighbors, which gives us a triangle (Figure 11c).
I pick a random point in the triangle (Figure 11d) and
move the vertex to that point (Figure 11e). I try to pick
a point that’s not too close to the edges so that the tri-
angles don’t get too long and skinny right away. Writing
?(a, b) for a random number in the range (a, b), I com-
pute three numbers a0 = ?(.2, .7), a1 = ?(.1, 1−a0), and
a2 = 1−(a0 + a1). I then randomly apply these weights to
the triangle’s three vertices to get the new point. Because
the weights are all positive and they sum to 1, the new
point is guaranteed to lie inside the triangle.

Although the connectivity of the triangles (that is, the
mesh’s topology) doesn’t change over the course of the
simulation, the mesh can flop over on itself. So, some

triangles can land on top of others. The overlap penalty
helps reduce this from happening too much.

Figure 12 shows the results after 25,000 steps and 616
updates.

Voronoi cells
A Voronoi diagram contains a set of convex regions

called cells. Each cell contains a single input point and
all the points that are closer to that input point than to
any other.

You can use that description to write a brute-force
Voronoi renderer that fills each cell with the average
color of the original pixels under it, using a list of N 2D
input points to define the cells. Let’s do it in two passes.

Before we start, though, we’ll create an auxiliary
grayscale image called V, where each pixel is initially set
to −1. What we want to do is to fill each pixel of V with
a number from 0 to N − 1, indicating which input point
it’s closest to.

We’ll also create two 1D arrays. First, we’ll make an
array C of N colors, and set each to (0, 0, 0). We’ll also cre-
ate a counting array K of N integers, which we’ll set to 0.

For the first pass, we’ll visit each pixel (x, y) in the orig-
inal image, compute its Euclidean distance to each of
the input points, and find the closest one. (Because we’re
only comparing distances, we can work squared dis-
tances and save ourselves an expensive square root.)
Let’s call the nearest input point v. We’ll set the corre-
sponding cell of V to v. We’ll also add that pixel’s color
from the original image into Cv and increment Kv by one.

When we’re done with the first pass, each element Cv

contains the sum of the colors of all the pixels that are
closer to input point v than to any other, and Kv tells us
how many of them exist. We’ll divide each color Cv by Kv

to get C ′v, the average color of the pixels in that cell.
Now comes the second pass, which is easy. We scan

through V, get the index v, and we place the color C ′v into
the corresponding pixel in the output image.

This algorithm works just fine, but the first pass is slow.
It also doesn’t scale well. If we use N input points, then
every pixel has to compute its distance to all N points. If
we double the input points to 2N, it takes twice as long.
The easy way to speed things up is to actually compute
the Voronoi diagram using an efficient algorithm. To get
going, I recommend using one of the free implementa-
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12 Using the mesh to approximate the toucan. (a) The original 12 × 12 grid of boxes. (b) 6,000 / 374. 
(c) 12,000/ 486. (d) 18,000 / 571 (e) 25,000 / 616. (f–j) Figures 12 through 12e with outlines.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

11 Geometry for the mesh. (a) The basic mesh. (b) Each vertex can move
within the hexagon formed by its six closest neighbors. (c) A triangle
formed by the vertex and two adjacent neighbors. (d) Finding a point in
that triangle. (e) Moving the vertex to that point.

(a) (b) (c)

(d) (e)



tions available on the Web (see the
“Further Reading” sidebar).

Figure 13 shows the results. After
25,000 steps, there were 769 im-
proved images.

Measure for Measure
Let’s take a look at the performance

of these different filters. In Figure 14,
I show numerical data gathered from
the runs that produced the images in
Figure 13.

To make the error plots, I drew a
line of constant error from each iter-
ation where a new image was pro-
duced to the right, until I reached
the next iteration with a new error
value. This is sometimes called a
sample and hold plot.

The update plots try to capture
the relative frequency with which
new candidates are accepted. For
each point on the plot, I looked at a
window of 100 steps centered at the
point in question and counted up
how many times a new candidate
was accepted. Then I divided that
count by 100. That gives us a rough
measure of the probability that a
new candidate would be accepted as
the simulation chugs along.

Figures 14g and 14h show these
results superimposed. The point isn’t
to actually read off the data, but to
see how the different algorithms line
up. Surprisingly, though the mesh is
the most constrained geometry, here
it’s the best at minimizing the error.

Of course, we don’t want to go too
far in using these error values to mea-
sure the quality of the results. After
all, if we wanted an error of zero, we
could have it just by using the original
image and spare ourselves all this
effort! The real test comes from how
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13 Using a Voronoi diagram to approximate the toucan. (a) The original 12 × 12 grid of cells. (b) 6,000 / 369. 
(c) 12,000 / 505. (d) 18,000 / 599. (e) 25,000 / 769. (f–j) Figures 13a through 13e with outlines.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
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14 Data for the toucan. For each type of geometry, the first plot shows the error over time.
The second one shows the probability of finding a better candidate over time. (a) Dots error.
(b) Dots probability. (c) Half dots error. (d) Half dots probability. (e) Boxes error. (f) Boxes
probability. (g) Triangles error. (h) Triangles probability. (i) Mesh error. (j) Mesh probability. 
(k) Voronoi error. (l) Voronoi probability. (m) Combined error plots, all scaled to the same
range. Dots are in red, half dots are green, boxes are blue, triangles are violet, the mesh is dark
cyan, and Voronoi cells are pale red. (n) Combined update plots, using the same color scheme.



the images look—the error is just to get a feel for how
the algorithms proceed with their work.

More examples
I’ve run these eight algorithms on a few other images

to show you how they look.
Figure 15 shows an image featuring a prominent

Black-Eyed Susan, Figure 16 shows the results for a pair
of puffins sitting on a shoreside rock, Figure 17 shows
the filters applied to a hummingbird feeding at a yellow

flower, and Figure 18 shows what happens to an image
of a child’s soft toy train.

It’s fun to watch these algorithms do their stuff, shuf-
fling the pieces around from their starting shape and
size to their final position. You can find animation files
for each of the examples in this column at http://
computer.org/cga/cg2002/g5toc.htm.

Because of their low resolution, these filters work best
on images with large regions of similar color, where
what really matters are the shapes and colors, and not
the fine details. Running these filters on an image of a
zebra is likely to replace its beautiful black-and-white
stripes with a gray mush. Of course, if you like those
stripes, then there are other ways to keep them while
compressing the image. My goal here wasn’t compres-
sion of the original image, but nice low-fidelity approx-
imations that look interesting.

Discussion
The filters presented in this column aren’t fast. On the

other hand, I paid no attention to efficiency when I
wrote the programs and ran them in debug mode. Just
a little profiling and tuning would doubtlessly improve
performance. On images of about 300 × 200 pixels, my
1.7-GHz home PC can deliver about 2 or 3 iterations per
second for most of these filters. Making the 40 exam-
ples for this column took about 120 hours of steady com-
puting. Although these filters are impractical for routine
use today, I think that would be easy to change.

First, you could write better code and then compile it
with optimizations. Second, I started each run by placing
my geometry in a regular grid. Putting the elements down
in a distribution that even roughly corresponds to the
importance diagram would probably give the program an
enormous head start. Third, I evaluate each image from
scratch for each iteration. Because only one or two geo-
metric elements change per iteration, you could find the
bounding boxes for those elements and just redraw the pix-
els in those boxes, which would mean only revisiting the
geometric objects that fall into those boxes. Fourth, when
I perturb my objects, I do so randomly. Again, using infor-
mation from the importance diagram could go a long way
toward getting them into good configurations quickly,
rather than waiting for them to try many alternatives
before lucking into a good spot. Fifth, one could use an esti-
mate of the gradient of the error to nudge pieces in the
direction where they’ll do the most good. And finally, com-
puters are getting faster all the time, so what’s prohibitively
slow today will certainly be very fast in the future. With
enough speed, it would be fun to have a slider that set the
number of steps to take, or the number of improvements
desired. Then by moving the slider back and forth, you
could see the image interactively at different qualities of
approximation and pick the one you like the best.

If you run one of these filters on one frame from an
animation and then run it again on the next frame, the
geometry will probably pop around quite a bit. The “boil-
ing” image look is sometimes desirable, but usually not.
We can generally avoid it by using the final candidate
for one frame as the starting candidate for the next, (see
the technique in “Painterly Rendering for Animation”
in the “Further Reading” sidebar). As long as the two

Andrew Glassner’s Notebook

84 September/October 2002

15 Applying the filters to a picture of a Black-Eyed Susan. (Photograph by
the US Fish and Wildlife Service.) The number in parentheses reflects how
many times over the run of 25,000 iterations the perturbation was an
improvement and became the new best image. (a) The original image. (b)
Scale boxes (98). (c) Scale dots (144). (d) Dots (1,005). (e) Half dots (1,128).
(f) Boxes (749). (g) Triangles (1,219). (h) Mesh (560). (i) Voronoi (540).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

16 Applying the filters to an image of two puffins sitting on a rock. (US Fish
and Wildlife Service/photo by Richard Baetsen.) (a) The original image. 
(b) Scale boxes (66). (c) Scale dots (91). (d) Dots (917). (e) Half dots (1,100).
(f) Boxes (810). (g) Triangles (1,265). (h) Mesh (475). (i) Voronoi (575).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)



images are somewhat similar (that is, they have some
image coherency), the geometry shouldn’t have to move
too much to accommodate the changes.

You could actually make sure of this by using ideas
from image processing and optical flow to deliberately
move the geometry along paths (smooth or ragged, as
desired) from one frame to the next.

As with any program that takes a long time to run, it’s
a good idea to save periodic checks as you go, in case
the program needs to be stopped or the computer crash-
es. The easiest checkpoint for these filters is a list of the
current geometric elements and the current iteration
number. The program just takes the input as the best
candidate and continues until it completes the desired
number of steps. Using the final checkpoint of one frame
of an animation as the starting state of the next is an
easy way to reduce the boiling effect.

It’s also fun to take one set of geometry and apply it to
another picture. Sometimes you get an interesting
merge where you can discern the first picture from the
shape of the pieces, but it seems to be hiding among the
colors that come from the second picture. This effect is
particularly noticeable in animation when your eyes
have a few frames to catch and track the contours.

I ran each filter in this column on each image for
25,000 iterations. The number 25,000 was arbitrary. It
just seemed like the simulations were settling down
around there in my tests. It would be much better
instead to use an automatic error-based stopping con-
dition. A simple but effective condition is to stop when
the score for an image (that is, its total error) is below
some numerical threshold.

This is easy, but it has the problem that it can be hard
to know what threshold to pick. After all, these images
are approximations and will always have some error.

A better solution is to try to detect when the opti-
mization has flattened out. In other words, you try to
detect when the error appears to have stopped improv-
ing for a long period of time. An easy implementation
of this uses two numbers. The first is a window width
W, and the second is an error change threshold C. We
apply the test every W iterations and find the difference
between the score now and the score W iterations ago.
Then, we divide that difference by the score at the end
of the window. This gives us a measure of the relative
improvement over the last W iterations. If it’s less than
the threshold C, we stop.

When C is small, the algorithm will continue to run
even when the improvements are small in value. So you
want C to be small enough to let the algorithm find a
nice solution, but not so small that you wait endlessly
while imperceptible changes accumulate. By the same
token, the window W needs to be large enough that you
don’t stop when you’ve hit an unlucky sequence of per-
turbations. My rule of thumb was to set W to about 4N,
where the approximation has N elements. Then I set C
automatically: I find the improvement for the first win-
dow of W elements, and I set C to 1/100 of that value. It’s
not a perfect condition, but it’s usually pretty close. If I
need more iterations I can just read the output file where

the program stopped and restart the system.
As with any stopping criteria, you’d probably also

want to set a large upper limit on the number of steps so
the program doesn’t run forever.

Writing the filters in this column can be a lot of fun.
There’s something rewarding about successive 
approximation. �
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17 Applying the filters to an image of a Rufous hummingbird. (US Fish and
Wildlife Service/photo by Dean E. Biggins.) (a) The original image. (b) Scale
boxes (73). (c) Scale dots (80). (d) Dots (942). (e) Half dots (1,226). (f) Boxes
(732). (g) Triangles (1,348). (h) Mesh (114). (i) Voronoi (593).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

18 Applying the filters to an image of a child’s toy train. (a) The original
image. (b) Scale boxes (66). (c) Scale dots (84). (d) Dots (1,039). (e) Half
dots (1,218). (f) Boxes (808). (g) Triangles (1,335). (h) Mesh (69). 
(i) Voronoi (757).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)


