
Our world is imperfect—not everything is exactly
the way we wish it would be. Perhaps this is a good

thing, as improving the world gives us something to
strive for.

One way to better the world is to edit it. We start with
something that’s close to what we want and then
improve on it. Editing is a normal part of almost every
creative process, whether we’re starting with something
made by someone else or our own creation.

A common way to improve something by editing is to
find a feature we don’t like and replace it with something
we prefer. Text editors universally provide this ability with
some kind of search and replace command. So if you’re
reading a big document that discusses the adventures of
a character named Fred, but you think it would be better
if his name was David, you can simply tell the system to
replace all occurrences, or instances, of Fred with David.

Most programs let you apply the change as a global
substitution, automatically altering each instance of the
target (the name Fred) with the replacement (David).
Usually you can also tell the system to let you preview
each substitution before it’s committed, to ensure noth-
ing goes astray in the process. If you forego this manu-
al confirmation step the substitution process goes much
faster, but you might end up (if your search is case insen-
sitive) with some character in your story inexplicably
ordering pasta with aldavido sauce.

Search and replace is too good an idea to limit to text.
In 1988, David Kurlander and Eric Bier showed how to
use this idea in vector graphics, or drawings made out
of lines.1 As Figure 1 shows, this is a great way to build
up a Koch snowflake: just replace each straight line with
a new line with a point on it and then do it again. In this
example, the program looks for straight lines at any
position, angle, and length and replaces them with the
replacement pattern transformed so that the endpoints
match.

Here we can see the basic ideas behind all search and
replace methods: search for the target, remove the tar-
get, and insert the replacement properly transformed
to match the target.

Some interesting variations on this idea have
appeared on television in recent years, particularly dur-
ing sports broadcasts. It’s now common for broadcasters
to replace the advertising signs in a stadium with dif-
ferent signs, so home viewers and fans at the game see
different ads.

Broadcasters use other techniques to enhance the
game’s visual presentation. For example, some systems
augment the field’s video image in a football game with
a synthetic yellow line that represents where the offen-
sive team must advance the ball to secure a first down.2

Rather than actually painting the line, they insert it
electronically on top of the video signal somewhere
between the camera and the transmitter. The illusion
is convincing because the system is sophisticated
enough to recognize when a player or official on the
field has moved into a position where he would be
blocking our view of the line, were it really there. When
a person on the field obscures our view of the line, the
system suppresses drawing it into the image, so that it
appears naturally obscured.

Note that this system isn’t actually a search and
replace technique (there’s no searching or removal, and
they just add the yellow line to the video). The technique
belongs to the field now called augmented reality.

In comparison, I’d like to discuss building a system
that will let us perform a search and replace on raster
images. If we provide a source picture, a target image,
and a replacement image, the system can remove every
instance of the target from the source and insert in its
place a copy of the replacement. Of course, implement-
ing this is a little more complicated.

Andrew
Glassner

Image Search and Replace __________________________

Andrew Glassner’s Notebook
http://www.glassner.com

80 May/June 2003 Published by the IEEE Computer Society

(b) (c)(a)

1 Creating one edge of a Koch snowflake. (a) The rule
is that we replace each straight line by a line of the
same length, but with a point in the middle.
(b) Applying that rule four times to a single straight line
creates a crinkly shape. (c) Applying the rule to the
three sides of a triangle makes a Koch snowflake.

The big and small picture
Let’s start with the big picture. The search and replace

algorithm starts with three pictures, as Figures 2a, 2b,
and 2d show: the source picture S, the target picture T,
and the replacement picture R. Our goal is to find each
instance of T in S, and replace it with R.

Because it’s rare that the target and replacement
images will rarely be rectangular, both T and R can each
have associated masks, TM and RM. These masks indicate
the opacity of their corresponding pixels in T and R. A
value of 0 (or black) means the pixel is transparent,
while a value of 255 (or white) means the pixel is
opaque. Intermediate shades of gray represent inter-
mediate amounts of transparency. This lets us create a
smooth edge around the parts of T and R.

To build my prototype, I started with a simple
searching technique that just marches through the
source picture one pixel at a time, looking for copies of
the target. This will be much too inefficient when we
later start adding in other transformations like rota-
tion, scaling, and color shifting. For simplicity, right
now I’ll stick to simple brute-force searching for copies
of T that seem to be pasted right into the source picture
without any geometrical or color changes. I’ll return to
this step later.

Using this automatic searching, we start by looking
through the source image for candidates. These are
regions of the source that might be instances of the tar-
get. Unlike text processing, we often can’t be sure exact-
ly when we’ve found a match. Small variations in color
or shape can make it hard for a computer to detect a
match even when the general features look similar.
Rather than making a final decision at this point, when
we think we’ve found a region that could be a copy of
the target, we call it a candidate and add it to a growing
list of possibilities for later consideration.

Then we’ll rank those candidates with some measure,
so that the most likely matches will bubble up to the top.
A simple sum of absolute color differences on a pixel-

by-pixel basis does a pretty good job of distinguishing
the close matches.

Next, the algorithm presents each candidate to us one
by one, in their ranked order, the best ones first. If we
say that yes, this candidate should be replaced, the com-
puter can’t just drop the replacement over the source.
Take a look at Figure 3. You can see if we simply drop a
copy of the replacement R over the target T, bits of the
target will still be visible. What, then, can we do?

The answer comes from a new class of texture-
synthesis algorithms. These algorithms take some
piece of reference texture and “grow” arbitrary
amounts of that texture to fill any desired region. They
can also blend that new texture into the boundaries of
a region so that it smoothly merges with the parts of
the image already existing.

We can see this in action in Figures 4a and 4b (next
page). The target mask TM tells us which pixels we need
to replace. Now we can simply write the replacement
pattern R on top of where T was, as in Figure 4c, and all
is well. The replacement mask RM tells us which pixels
to copy out of R and how strongly to blend them into S.

By default, the algorithm positions the replacement
over the target so that centers of both bounding boxes
overlap. Of course, we can change this default alignment
on both images and on a per-substitution basis.

In summary, the basic algorithm goes like this:

1. Look through S and find candidates, assigning each
one a score based on the quality of the match.

2. Offer us a chance to accept or reject the highest-ranked
candidate (we can skip this step if we feel brave). Once
we make the choice, remove this candidate from the
list. If we decide that this candidate shouldn’t be
replaced, jump to step 5, or else continue to step 3.

3. Remove this instance of T from the source image,
and fill in the hole with synthetic texture.

4. Draw the replacement image R over the spot where
the match was found.

IEEE Computer Graphics and Applications 81

2 (a) Source image S, (b) target image T, (c) target mask TM,
(d) replacement image R, and (e) replacement mask RM.

3 If we simply drop the replace-
ment on top of the source, parts of
the source might still be visible.

(b) (c)

(a) (d) (e)

5. If there are candidates yet to be considered, return
to step 2, or else quit.

Let’s look at the scoring and synthesis steps a little
more closely.

Scoring
Probably the easiest way to determine if one picture

resembles another is to compute a penalty or difference
score. Add up the differences in the color values of the
pixels, one by one. We find the absolute difference in each
of the red, green, and blue components and add them
together. Lower penalty scores indicate better matches.

There’s a little gotcha with this technique: it has trou-
ble if some of the target falls off the edge of the source,
as in Figure 5. We might just ignore any pixels in T that
fall outside of S, but then we’d only accumulate penal-
ty scores for a smaller number of pixels, which would
reduce the overall penalty and make this match look
really good. In the extreme, there might be just one pixel
of T that overlaps S, and if they happen to be the same
color, then the penalty score would be 0, indicating a
perfect match!

One way to fix the score for partial overlaps is to divide
the total penalty score by the number of pixels actually
compared, creating an average per-pixel difference. But
we’ll want to still make sure that there are enough pix-
els compared, so that we’re considering a significant
overlap. The easy way here is to set a user-adjustable
threshold. For example, at least 40 percent of the pixels
of T must overlap with S to even consider that position
as a candidate. If we set this percentage to 100, only
copies of T completely contained within S are candi-
dates. Smaller values will catch instances of T partially
over the edge, but will also start picking up more noise
and bogus instances.

Synthesizing
Once we accept a candidate for T, the system needs

to get rid of it. The first part is easy—just erase pixels
into the source, modulated by the mask TM, as in Figure
4a. The second part requires filling in those erased pix-
els with something that looks good.

In recent years we’ve seen numerous algorithms that
can create arbitrary amounts of seamless, synthetic tex-
ture in an image, such as those presented by Heeger and
Bergen3 and Portilla and Simoncelli.4 These are some-
times called texture-expansion algorithms, because
rather than creating texture from first principles, they
start with a piece of reference image and then generate
a new texture that looks like the reference.

It’s easy to get going with basic texture expansion
algorithms, even if you don’t want to write the code

Andrew Glassner’s Notebook

82 May/June 2003

4 (a) First we remove the source (blue indicates the removed pixels). (b) Then we fill in the source with a synthetic
texture. (c) Now we can drop the replacement into the scene.

5 We have to
be careful if we
want to catch
the upper copy
of the sign,
which is only
partially visible.

(a) (b) (c)

yourself. For example, free source code is available for
a plug-in for the GIMP image editor,5 and Alien Skin
Software’s Image Doctor is available commercially as a
plug-in for editors such as Adobe’s Photoshop. For my
prototype, I wrote a simple texture generator based on
Wei and Levoy’s technique,6 along with a robust substi-
tution method that Igehy and Pereira7 designed for
masked images.

Reference samples
Texture expansion algorithms that create texture work

by generalizing from a reference sample. Where that
sample comes from makes a big difference to the image.
For example, in Figure 6b I deleted a patch of water. In
Figure 6c I selected a reference from a patch of the back-
ground greenery, and as you can see the results are more
surreal than realistic. By contrast, in Figure 6d I told the
system to create new texture based on some nearby
water, and the result looks much better.

This leads us to the question, When we replace a can-
didate, where should we go looking for new texture?
There are a few answers, depending on how hard we
want to work. I think the simplest answer is to look in
the neighborhood of the pixels we’re replacing. For
example, if we draw a bounding box around the patch
we’re replacing and then expand it, then we can pull tex-
ture from the region between the two boxes.

This solution works pretty well in general, and it
serves as a good starting point for many replacements,
but it won’t always work. Each time the system offers us
a candidate for replacement, it can also show the region
from which reference texture will be drawn for that
replacement. If we don’t like the choice of region, we
can identify a new region somewhere else in the image.

Obviously this solution won’t always work. One com-
mon problem is when there just isn’t a big enough patch
of clean texture available. For example, if we want to
replace a sky full of hot-air balloons, there might not be
much blue sky visible between them. So we can also point
the system to another image for reference. In this case,
all of our balloons might get erased by using reference
texture taken from another picture of an empty blue sky.

Another problem with using nearby pixels arises
when those pixels also contain pieces of other objects,
including other target copies. For example, we might
want to get rid of a computer mouse sitting on a wood-
en tabletop, so we fill in the region under the mouse with
wooden grain. However, in the box around the mouse
we might accidentally catch the corner of the keyboard,
and then that little corner will be replicated as part of
the texture. Choosing as a reference a piece of the table
that shows nothing but wood grain does the trick.

A really troublesome situation can occur if we’re
replacing an object that straddles two types of back-
ground, as in Figure 7 (next page). In this example, we
should replace the truck’s bottom half with texture from
the street and the top half with the greenery behind it.
Sometimes the texture generator does pretty well with
a situation like this, sometimes it doesn’t. For the times
when automatic methods fail, it would be useful to have
a manual tool to break up the region under the candi-
date and apply different textures to different regions.

IEEE Computer Graphics and Applications 83

(a)

(b)

(c)

(d)

6 (a) Source
picture. (b) I
manually identi-
fied the region I
want to
remove.
(c) Filling in this
region with a
synthetic tex-
ture based on
the background
trees doesn’t
look good.
(d) Basing the
synthetic tex-
ture on the
nearby water
looks much
better.

Matchmaker, matchmaker
So far I’ve limited the search to simple copies of the

target image that we haven’t changed in any way except
for position. Let’s see what happens when we relax that
restriction.

The first things we’ll want to include are of course
rotation and scaling. We should be able to match the tar-
get no matter what size it is, or how it’s been rotated.

We do need to be careful that the target isn’t too much
smaller than its largest appearance in the source. If we
have to scale up the target too much to test it against a
region of the source, the target is going to get pretty blur-
ry, and it might not match very well. By the same token,
the source instances we’re trying to find can’t be too
small. If a candidate is only a few pixels large in the
source, then we’re going to have a lot of trouble ensur-
ing that it’s a match.

We can include some other important geometric
transformations as well. Perhaps the most important is
perspective, since that’s going to be present in almost
any photograph we want to manipulate, and most com-
puter-generated images as well.

We’ll also need to include some image-based trans-
formations. Suppose our source image is a photograph
taken on a hazy day. Instances of the target that are far
away will have less contrast than those that are closer,
and their colors will be shifted a bit. Suppose we have a
picture of a bunch of cars parked outside, and we want
to replace all of last year’s models with shiny new ones.
If some of those cars are partially or completely shad-
owed by clouds or buildings, then those regions of the
cars will be darker than a uniformly lit car. As human
observers, it’s perfectly obvious to us that they still
should be replaced.

Shadows result from the absence of light, but we can
also have problems if our images contain different kinds
of light. Suppose we’re working with a clothing store
that’s invested heavily in lots of in-store signs, each of
which carries a large and prominent copy of the store’s
logo. They’re now considering changing their logo, and
they want to see how the store will look when all the

signs have the new logo on them.
They bring us a photograph of the
store that they’ve shot from the front
door, a picture of their new logo, and
ask us to show them how the store
would look with the updated signs.

A potential problem here is that
lighting could influcence the store
photograph. There might be sun-
light coming in through the big front
windows, fluorescent bulbs illumi-
nating most of the store, and halo-
gen bulbs highlighting some the
merchandise. Each of these lights
has a different white point and a dif-
ferent illumination spectrum, which
will affect the color of the logos on
the signs. The logo might be red-
shifted in one place and blue-shifted
in another, even if to the human eye
all the logos appear pretty much the

same. For the computer to find these matches, we’d
want our search to include accommodation for a range
of tonal and color shifts.

We have other reasons for accommodating such
shifts. To just scratch the surface, we might want to
match items in the presence of

� color bleeding (as when a bright red carpet casts a red
tint on objects near to it),

� local discolorations (as when a shiny object has a
highlight that’s missing in the target image), and

� aging (when some dyes get old or are exposed to the
sun they tend to fade).

It’s important, then, that we detect regions of the source
that are close to (but not exactly the same as) the target.

Of course, loading in all these geometric and color
transformations makes the searching problem more
expensive. Just how much more expensive might come
as a surprise.

Better search
Now we’ve got a lot of dimensions to consider: There’s

two axes of translation, one for rotation, two axes of scal-
ing, perspective (which we might model as a one-point
perspective characterized by amount, and the horizon-
tal and vertical location of the vanishing point), overall
brightness, and color shifting (which we could model
as shifts in red, green, and blue). That’s 12 so far.

The brute-force way to do this search would be to
make 12 nested loops. Let’s get a rough handle on the
numbers. Suppose we have a 512 × 512-source picture,
the color ranges from 0 to 255, and we’ll consider 360
degrees of rotation, scaling from 0.5 to 1.5 in each direc-
tion (in 100 steps of 0.01), and brightness and perspec-
tive measures from 0 to 100. If we take eight steps
between values for each measure along each range, then
we’ll have to make around 2.8 × 1039 tests. Let’s assume
we have a really fast computer and it can do 100 tests
per second; this search would take around 1.5 × 1028

years. Astronomers are estimating the age of the uni-

Andrew Glassner’s Notebook

84 May/June 2003

7 If we want to
remove this
truck, we should
generate a
texture for the
upper part
based on the
greenery
behind it and a
texture for the
lower part (and
shadow) from
the road
surface.

verse at somewhere around 12.5 billion years (give or
take 3 billion). Taking the high-end estimate of 15.5 bil-
lion years, this says that our one little search would take
about 9.6 × 1019 universe lifetimes to complete. Of
course, we could complete this search in only 96 years
using parallel computing if we could assign an equal-
sized chunk of the search to each of about a billion bil-
lion different universes, but since we only have the one
universe at the moment, that seems just a bit impracti-
cal. A billion billion computers running in parallel would
also impose some difficulties; just logging in to each one
would take quite a while. Of course, we could hand-
optimize the code a bit, but to get this search to run in an
hour would require speeding things up by a factor of 460
trillion trillion billion (or is that 460 billion trillion tril-
lion?), which would require a really good programmer.

If brute-force at full resolution doesn’t work, let’s try
working with a simpler problem. Probably the easiest
way to get out of this computational nightmare is to chop
down all those numbers.

We can make some progress computationally.
Suppose that we’re looking for red balloons against a
blue sky. We don’t need to take lots of steps when we’re
looking at regions with no red in them; in fact, we can
skip these regions altogether.

One way to figure this kind of thing out is to simplify
both the target and the source and do a series of match-
ing steps at different resolutions, using a multiresolu-
tion algorithm. We’d start with simple versions of both
images, perhaps just by scaling them way down, and
then search those much smaller images for matches with
a somewhat looser tolerance. If we find a match, then
we use that as the starting point for a more careful
search at a slightly higher resolution, and so on, work-
ing our way up until we reach the original images at
their original resolution.

Other ways exist to reduce the data size describing
the image but still capture some of its important fea-
tures. Both Fourier analysis and wavelet decomposition
are mathematical methods that let us compare images
at a variety of ranges of scales.

However, I think such a computational approach is
all wrong because we’re using the computer to do some-
thing that people are good at: pattern matching. If I’m
looking at a picture and looking for a target image as
complicated as the faces of a couple of friends, I can
instantly spot them with no difficulty. Waiting for more
than a billion billion lifetimes of the universe to pass for
the computer to come to the same conclusion using
brute force seems like a poor use of resources.

A better matching algorithm, then, is human driven.
We can do extremely well with just one piece of human
input. Ask users to tap once with their pen or mouse in
roughly the center of each instance of the target in the
source. Then we can do a more localized search using
that as a starting point. Again, we can use multiresolu-
tion methods to start the search coarsely at first and then
refine our match with a series of ever-finer searches.

This is a huge step forward, but with a little more
effort we can do even better. Users can provide a com-
plete multidimensional starting point. To make a match,
they can drag a copy of the target over the source, drop

it in about the right place, quickly scale and rotate it into
position, and then do a little color shifting if necessary
to make it look like the source. The computer can then
refine that guess with a fine-resolution search in the
neighborhood of the initial input, tweaking each of the
parameters for the best fit.

The big value here is that we actually know that
there’s a match to be found, so we’re never wasting time
in completely unproductive searches. We can use a sim-
ple and greedy maximum-descent algorithm, repeat-
edly looking for parameter tweaks that make the
matches better and accepting them, rather than look-
ing all over each one’s entire range for the best place to
start looking.

This human-seeded approach works well, and I’ve
found that even with my unoptimized code I can zero
in on a good match in just a minute or less given a good
starting hint. When using the program, we don’t need
to sit and wait for each refinement—we can give the
machine a bunch of starting points, go off to lunch or
do other work, and let the machine crunch away.

You can also specify the quality of the match you
require on each hint. For example, if you’re replacing a
logo on a department store sign, it’s probably important
to have correctly rotated and sized high-quality match-
es. However, if you’re doing something more casual, like
replacing round red balloons with long yellow ones,
then you might be willing to accept a much cruder
match. As long as the new balloon roughly matches the
old one, that’s good enough. Such a match can of course
be found much faster. In fact, you can lower the search
quality to zero, which means that your hint is used
immediately as the match.

While you’re identifying candidates, you can also pro-
vide the region of the source image (or another image)
that should be used as the reference texture for filling
in the hole.

The human-driven version of the algorithm goes like
this:

1. Create a list of seeds by dropping copies of the tar-
get on the source, applying geometric and color
transformations as desired to make the instances
match the source.

2. Tweak a user-provided seed to get a match that’s as
good as the user requested.

3. Remove this instance of T from the source image
and fill in the hole with a synthetic texture.

IEEE Computer Graphics and Applications 85

We don’t need to sit and wait for each

refinement—we can give the machine

a bunch of starting points, go off to

lunch or do other work, and let

the machine crunch away.

4. Draw the replacement image R over the spot where
the algorithm found the match.

5. If there are seeds yet to be handled, return to step
2, or else quit.

Some examples
Let’s look at a few examples.
In Figure 8a I took a picture of a trailer with a few

orange traffic cones around it. Let’s isolate one of those
cones, as in Figure 8b, and replace each instance of it
with the detour sign of Figure 8c. You can see the result
of the erasure in Figure 8d. In general, this looks pretty
good, but you can see artifacts in the texture replace-
ment if you look closely. This is largely due to the sim-
plicity of my texture synthesis routine. A more
sophisticated algorithm could probably do a better job
of filling in the holes. Once it fills in the holes, the algo-
rithm scales the detour signs and places them at the
appropriate locations, giving us Figure 8e.

In Figure 9a I started out with a candle display from
a local store. I want to replace the medium-sized green
candles of Figure 9b with the soft panda heads of
Figure 9c. You can see the result of the removal in
Figure 9d. This task stresses my texture synthesizer
pretty badly, but we’ll cover up most of the problem

areas when we insert the pandas. Figure 9e shows the
new store display.

We can do a little better with this by adding the abil-
ity to handle color shifts. In Figures 10a and 10b I con-
verted the green candle and the panda’s head into
black-and-white versions. The search algorithm looks
for this black-and-white candle in a black-and-white
version of the source.

You’ll notice in Figure 10c there’s one candle I just
couldn’t match accurately because of the occluding
leaf. The synthetic texture here leaves a lot to be
desired, but I think a more robust implementation

Andrew Glassner’s Notebook

86 May/June 2003

(a)

(b) (c)

(d)

(e)

8 (a) Original
image of the
trailer,
(b) orange cone
target,
(c) detour sign
replacement,
(d) cones
erased, and
(e) final
replacement.

9 (a) Original candle display, (b) candle target,
(c) panda head replacement, (d) removal of the
candles, and (e) final replacement.

(a)

(b) (c)

(d)

(e)

could do a far better job. Even so, once the panda heads
are in position the whole thing works well enough to let
us see the results. Figure 10d shows our new line of col-
ored, scented panda heads.

Finally, let’s look at a 3D rendered example. In Figure
11a I made a simple bedroom with a festive wallpaper
pattern. Suppose we’d like to see what this looks like if
we had fish instead of elephants. Of course, if we had
the original 3D scene around we could just re-render it,
but suppose we don’t have the 3D model available. In
Figures 11b and 11c I show just the elephant and his
mask. Note that the elephant isn’t distorted by per-
spective or rotation as he is in the wallpapered room.
Because I still had the original elephant that I drew, I
just grabbed that image and used it. It’s possible with
modern image-editing programs to correct for distor-
tions like perspective, so even if I didn’t have my orig-
inal I could get a pretty good target working from the
image. I could also use one of the elephants directly off
the wallpaper with no correction. In that case I’d need
to do a second search-and-replace to handle the ele-
phants on the left wall, which are distorted somewhat
differently. I drew the fish of Figure 11d to replace the
elephant. Their mask is in Figure 11e. The final result
is Figure 11f.

There are a couple of things to note here. First, my
input to the system was to drop the target elephant on
each occurrence in the source. Then I manually gave
the system a pretty good starting hint for the perspec-
tive distortion. Second, the system computed the aver-
age change in luminance over all the pixels that were
being removed and applied that change to the replace-
ments. Thus the fish on the left wall are a little darker
than the fish on the right wall, as they should be to fit

IEEE Computer Graphics and Applications 87

10 Color shift-
ing objects.
(a) Black and
white version of
a green candle,
(b) black and
white version of
a panda’s head,
(c) an undetect-
ed candle, and
(d) panda heads
with color from
the green
candle

11 (a) Wallpapered room, (b) target elephant, (c) target elephant mask, (d) fish replacement, (e) fish replacement mask, and (f) final
replacement. Note that the fish are darker on the left wall, following the overall darkness there. Note also that some of the elephants
weren’t replaced.

(a) (b) (c)

(d) (e) (f)

(a) (b)

(c)

(d)

the overall tone. Third, the elephants near the top of
the room were present enough that I could match to
them, even though in some cases not much of the cor-
responding fish replacements showed up in the result.
Finally, some elephants didn’t get matched. Three of
these elephants are hiding behind the bed: one in the
lower right, one above the bedspread on the left wall,
and one behind the headboard. Two of the elephants
cross over the corner of the room, so their body is on
the left but a piece of their trunk is on the right. These
didn’t get replaced because the fish would need the
same visible bend to look good. Finally, two of the ele-
phants—just to the right of the corner—were also left
alone. That’s because although the elephant doesn’t
straddle the corner, the fish would have, and it would
look wrong.

Wrapping up
One thing I’d like to add to this system is the ability to

identify and replace obscured matches. For example,
sometimes an instance is recognizable, even though it’s
partially hidden by some other object. Often even an
obscured object is visible enough to be recognizable to
the human eye, like the medium-sized candle at the far
left of Figure 9. It would be nice to capture the match
and then use the same occlusion on the replacement so
that it’s blocked the same way.

Shadows pose an interesting problem. Suppose that a
shadow falls halfway across an instance of the target. We
might be able to match this, but the algorithm I present-
ed doesn’t replicate the shadow in the replacement. With
a little more work, I think we could analyze each match
to find how it deviates from the source and then apply
those deviations to the replacement. This way, we’d main-
tain not only the original shadows in source, but also high-
lights, reflections, and other surface variations.

Taking a cue from some modern image-editing pro-
grams like Procreate’s Painter and Adobe’s Photoshop,
it would be fun to have a variety of replacement images
for each target. For example, we might have several
images of the panda head in Figure 9e, and have each
replacement use one of those at random (or let the user
choose them), so that the pandas aren’t all identical to

one another. And we needn’t use just pandas; if we
wanted to replace the candles with a variety of toys, we
could fill the shelves with a collection of different toys
simply by picking different replacement images for each
candle.

I’m intrigued by how much speedup I got from mov-
ing the matching problem from the computer to the per-
son. Of course, I’d like an automatic program that I could
start and then ignore as you can do with slow Photoshop
filters on big pictures, for instance. I like the idea,
though, of harnessing the amazing power of the human
visual system and brain to make a staggeringly slow and
complex process relatively fast and easy. �

References
1. D. Kurlander and E.A. Bier, “Graphical Search and Replace,”

Proc. Siggraph 88, ACM Press, 1988, pp. 113-120.
2. J. Flint, “TV Football’s MVP—Yellow First-Down Line,” The

Wall Street Journal Online, 26 Jan. 2000.
3. D.J. Heeger and J.R. Bergen, “Pyramid-Based Texture

Analysis/Synthesis,” Proc. Siggraph 95, ACM Press, 1995,
pp. 229-238.

4. J. Portilla and E.P. Simoncelli, “A Parametric Texture Model
Based on Joint Statistics of Complex Wavelet Coefficients,”
Int’l J. Computer Vision, vol. 40, no. 1, Oct. 2000, pp. 49-70.

5. P. Harrison, “A Nonhierarchical Procedure for Resynthesis
of Complex Textures,” Proc. 9th Int’l Conf. in Central Europe
on Computer Graphics, Visualization, and Computer Vision,
Winter School of Computer Graphics (WSCG), Feb. 2001,
http://www.csse.monash.edu.au/~pfh/resynthesizer/.

6. L. Wei and M. Levoy. “Fast Texture Synthesis Using Tree-
Structured Vector Quantization,” Proc. Siggraph 00, ACM
Press, 2000, pp. 479-488.

7. H. Igehy and L. Pereira, “Image Replacement through Tex-
ture Synthesis,” Proc. IEEE Int’l Conf. Image Processing (ICIP
97), IEEE CS Press, 1997, pp. 186-189.

Readers may contact Andrew Glassner at andrew@
glassner.com.

Andrew Glassner’s Notebook

88 May/June 2003

Get access
to individual IEEE Computer Society
documents online.
More than 67,000 articles and conference papers available!
US$9 per article for members

US$19 for nonmembers

http://computer.org/publications/dlib

