
“I know what you’re thinking about,” said
Tweedledum, “but it isn’t so, nohow.”
“Contrariwise,” continued Tweedledee, “if it
was so, it might be; and if it were so, it would
be; but as it isn’t, it ain’t. That’s logic.”
—Through the Looking-Glass, Lewis Carroll

Who knows what the truth really is? Not just tem-
porary or relative truth, but eternal and univer-

sal truth? Truth with a capital T.
Nobody knows the Truth, of course. However, that

hasn’t stopped people from looking. One of the results
of that search has been systems of formal logic that try
to turn the work of reasoning and arguing into mechan-
ical processes, where errors of interpretation and exe-
cution can be automatically detected and corrected.
Formal logic can’t tell us much about the human condi-
tion, but we can use it to reason our way through the
world.

One of the most famous visual tools for logic is the
Venn diagram, which most frequently shows the rela-
tionship between three object classes by drawing three
overlapping circles.

In this article I’ll talk about Venn diagrams, how we
can generalize them to more than three sets of objects,
and some related tools for visual logic.

Logical arguments
The goal of all the visual techniques we’ll cover in this

article is to help us decide on a class of logical questions.
To get the ball rolling, I’ll start by defining some useful
terms.

A logical argument is a sequence of statements. We
call the last statement the conclusion; the others are
called variously the premises, hypotheses, or assump-
tions. Each statement, including the conclusion, refers

to the existence of one or more object classes. A logical
argument is valid if the conclusion is always true when
all of the assumptions are true. Any logical argument
that isn’t valid is invalid.

Here’s an example of a logical argument with two
premises and a conclusion:

Premise 1: It rains a lot in the Northwest.
Premise 2: Seattle is in the Northwest.
Conclusion: It rains a lot in Seattle.

In this case, the argument is valid. How about this one?
Premise 1: Some dogs are known for their bark.
Premise 2: Some trees are known for their bark.
Conclusion: Some dogs are trees.

This argument is obviously invalid.
Let’s look first at the structure of valid statements, and

then at how we use them in patterns to create argu-
ments.

Statements typically use a small vocabulary of com-
mon terms. The connective terms and, or, and not have
their common interpretations.

We can use the if/then construction to build a logical
chain of true statements. For example, I might say, “If
I’m driving my car then I’m sitting down.” Let’s call this
statement S. Because an if/then construction has two
conditions, and each condition can be true or false, four
possible combinations exist for the entire statement.
Let’s rephrase S abstractly as “if a then b.” Let’s now
make four observations, one for each combination of
true and false for a and b. We’ll say that S is true or false
depending on whether it matches our observation. Table
1 shows the four choices and the results.

The first two of these decisions are reasonable given
how we normally use language. Cases 3 and 4 are per-
haps unusual. That’s because the rule for interpreting a
formal if/then statement is that if the first clause isn’t
satisfied then the whole statement is true. The princi-

Andrew
Glassner

Venn and Now______________________________________

Andrew Glassner’s Notebook
http://www.glassner.com

82 July/August 2003 Published by the IEEE Computer Society 0272-1716/03/$17.00 © 2003 IEEE

Table 1. Checking the validity of the statement S “if I’m driving my car then I’m sitting down” (where
a = “I’m driving my car” and b = “I’m sitting down”).

Case a b Observation Statement S

1 True True I’m driving my car, and I’m sitting down. True
2 True False I’m driving my car, and I’m not sitting down. False
3 False True I’m not driving my car, and I’m sitting down. True
4 False False I’m not driving my car, and I’m not sitting down. True

ple here is that if the first clause isn’t met then the whole
thing is irrelevant. Although the statement is irrelevant,
it’s certainly not false. And whatever isn’t false, is true.

So in any if/then statement, if the clause isn’t satis-
fied then the whole statement is taken to be true. For
example, let’s suppose that there are no talking dogs.
Then the statements “all talking dogs enjoy
Shakespeare,” “some talking dogs like to water ski,” and
“no talking dogs enjoy sipping coffee in outdoor Parisian
bistros” are all true, because the first clause is false.

One of the most common errors in logical reasoning
is getting the chain of cause and effect wrong. The oppo-
site of “if a then b” isn’t “if a is false then b is false.” Let’s
try that out with the language of our example S: “if I’m
not driving my car then I’m not sitting down.” That’s
clearly not going to be true in general. In fact, I’m sitting
down right now as I type this article, but I’m not in my
car. We call the correct logical opposite the contraposi-
tive, and we express it as “if b is false then a is false.” Note
that b comes first. In fact, this is exactly the same as the
original statement S. The contrapositive of S is, “if I’m
not sitting down then I’m not driving my car.” Now that
makes sense.

A phrasing more common to our everyday use of if
and then is the if and only if/then statement. For exam-
ple, “if and only if it’s cold outside then I’ll turn on the
heat.” In this case, we know that if the heat is on then
it’s necessarily cold outside and vice versa.

It’s easy to mix up the rules for if/then and if and only
if/then, but the rules of logic are careful about keeping
them distinct.

It’s also useful to be able to make statements about
whole classes of variables.

The phrases for any, for all, and for every, are syn-
onyms that let us make a claim about every element in
a class. For example, we could say, “For all birds, birds
have wings.” Often such statements are compressed a
bit, as in “all birds have wings.” We can also phrase this
in an equivalent form that expresses the nonexistence
of a class: “no birds are wingless.”

If we want to assert that at least one element of the
class has some property, we use phrases like there exists,
there’s at least one, and there is an. These are all syn-
onyms that let us claim that at least one thing with this
property exists. For example, we might say, “There exists
a bird that can’t fly.” This doesn’t mean that all birds can’t
fly, or that there are even two. It just means that there’s
at least one.

The phrases for all (and its variants) and there exists
(and its variants) are called quantifiers.

Prove it ain’t so
We can usually determine if an argument is valid or

invalid using only three basic tools.
First, we can simplify the statements using tautolo-

gies, or known true statements. Tautologies are useful
because they typically express true statements in slight-
ly different terms than those used in the original state-
ments. A tautology adds no new information to an
argument, but helps us convert or simplify it.

The second tool for proving an argument is to search
for a contradiction. If we assume the premises are true,

a contradiction leads to a conclusion that’s the opposite
of the conclusion in the argument. Sometimes we can
approach this from within the argument, and sometimes
we find it useful to apply tautologies to transform one
or more of the statements into a more convenient form.

The third tool, and the one I’ll focus on in this article,
is to convert everything into symbols and then manipu-
late those symbols in a mechanical way, without con-
cerning ourselves with what they stand for. In this
symbolic form, we often use the notation mentioned in
the sidebar “Standard Notations.” For example, ab
means “a and b,” or more completely, “both a and b are
true.” The expression ad′ means “a and not-d,” or “a is
true and d is false.”

Now that we know the statements’ forms, let’s look at
what happens when we bring them together to form
arguments.

The first person to study chains of symbolic state-
ments was Aristotle, who gave the name syllogisms to
patterns of arguments. He showed how to apply infer-
ence rules to arguments to determine their validity,
using a technique called deductive reasoning.

Aristotle’s insight was that if we can convert our state-
ments into symbolic form then we can apply standard
patterns to those symbols. We similarly use symbols to
solve word problems. For example, we might be asked,
“Bob has three chickens and bought four more chick-
ens. How many chickens does he have?” We convert this
word problem into the symbolic expression 3 + 4 = ?,
and apply our rules of arithmetic to find the answer.
Then we convert the symbolic result, 7, back into the
vocabulary of the original problem, leading to our con-
clusion (Bob has too many chickens).

Here are four of Aristotle’s patterns with examples
(recall that a → b means “if a then b”):

Modus Ponens (method of affirming):

1. a → b: If it’s a folk song, it has just three chords.
2. a: It’s a folk song.
3. Therefore, b: It has just three chords.

Modus Tollens (method of denying):

1. a → b: If the shoe fits, I’ll wear it.
2. b′: I’m not wearing the shoe.
3. Therefore, a′: The shoe doesn’t fit.

Disjunctive syllogism:

1. a ∨ b: My master plan is either brilliant or insane.
2. a′: My master plan isn’t brilliant.
3. Therefore, b: My master plan is insane.

IEEE Computer Graphics and Applications 83

Standard Notations
∀ a For all a
∃ a There exists an a
a ∧ b, ab a and b
a ∨ b, a + b a or b
~a, a′,a Not a
a → b If a then b

Hypothetical syllogism:

1. a → b: If it’s on the Web then it’s true.
2. b → c: If it’s true then it’s important.
3. Therefore, a → c: If it’s on the Web then it’s

important.

I should note here that three important oppositions
arise when working with logical arguments: the con-
tradiction, contrapositive, and converse.

To prove a contradiction we just apply these rules to
the premises to arrive at a conclusion that’s incompati-
ble with the stated conclusion. This proves that the argu-
ment is invalid.

If we’re given a statement “if a then b” (or a → b) then
the contrapositive is “if b′ then a′” (or b′ → a′). If we can
prove the conclusion’s contrapositive then we also prove
the conclusion itself.

The converse is an error of reasoning that goes like this:

1. a → b: If it’s chocolate, it’s delicious.
2. b: It’s delicious.
3. Therefore, a: It’s chocolate.

This conclusion is wrong. So just because the conclu-
sion of an if/then statement is true, that doesn’t mean
that the premise is true; the conclusion could be true for
other reasons.

Now that we have all this terminology under our belts,
let’s look at representing logical arguments visually.

Three-Venn diagrams
Figure 1 shows the famous Venn diagram for three

object classes, sometimes called a three-Venn diagram. If
we name these three classes a, b, and c then we can label
each of the diagram’s regions as in Figure 2. Note that
there are eight regions, corresponding to these three
classes’ eight possible combinations. Suppose that we
assign the three classes this way:

1. a = things that are scary movie monsters
2. b = things that are unusually large
3. c = things that are airborne

Table 2 shows examples of the eight combinations.
Remember that if a category is negated, that means the
object doesn’t have that trait.

I placed these in the appropriate zones in Figure 3.
Note that the white outer region contains all those
things that don’t belong within one or more circles.

This is an example of using Venn diagrams for classi-
fying. Here we have three criteria, and we place objects

in the diagram according to which
of these criteria they satisfy. You can
pick any three traits, plug them in
for a, b, and c, and then populate all
eight cells (don’t forget the outer
cell corresponding to a′ b′ c′).

We can also use Venn diagrams to
follow a chain of statements and see
if they form a valid conclusion. For
example, consider the following log-
ical argument:

1. All winged monkeys have tails.
2. All doctors are tailless.
3. Therefore, no winged mon-

keys are doctors.

Andrew Glassner’s Notebook

84 July/August 2003

1 Three circles of the traditional three-element Venn
diagram.

a

ab

b bc c

ac

abc

2 Venn diagram of Figure 1 with labels for each region.
The white unlabeled region outside the circles repre-
sents elements that aren’t within any sets.

Table 2. Examples of the eight possible combinations of classes a, b, and c.

Scary Unusually
Movie Large Airborne

Monsters Things Things Example

a′ b′ c′ A puppy
a′ b′ c A helium balloon
a′ b c′ The pyramids
a′ b c A pterodactyl
a b′ c′ The Blob
a b′ c Dracula
a b c′ Godzilla
a b c Giant atomic grasshoppers

Is this valid? The first thing we do is
convert it into symbolic form:

1. a = things that have tails
2. b = winged monkeys
3. c = doctors

With these substitutions, we get

1. All b are a.
2. All c are a′.
3. Therefore, no b are c.

Is this true? Figure 4 shows the
steps. In Figure 4a I marked in red
(meaning empty) the two cells a′ bc
and a′ bc′. This is because “all b are
a” is equivalent to “no b are a′.”
Similarly, in Figure 4b I marked in
red cells abc and a b′ c. I could mark
these cells as empty because I con-
verted “all c are a′” to the equivalent
“no c are a.” Figure 4c puts the dia-
grams together, and to confirm that
“no b are c,” we need only look to see
if any b cells that overlap with c
aren’t empty. They don’t, so the log-
ical argument is true.

Let’s look at a second example
with four statements:

1. Some children are intelligent.
2. Some government officials are

intelligent.
3. No government officials are

children.
4. Therefore, some government

officials are intelligent adults.

As before, first we convert this to
symbols:

1. a = children
2. b = government officials
3. c = intelligent people

The argument’s symbolic form is

1. Some a are c.
2. Some b are c.
3. No b are a.
4. Therefore, some b are ca′.

Figure 5a shows the first state-
ment, “some a are c.” Note that I
marked in yellow the two cells ac and
abc, and joined them with a connec-
tive line. This means that we know
that at least one of them is occupied,
but not necessarily both. Similarly, I
marked the cells bc and abc in Figure
5b the same way. Figure 5c resolves

IEEE Computer Graphics and Applications 85

A puppy

orne things)(Airborneborneborne)ly large things)(Unusually la)))lly laly lar

sters)cary movie monster(Scary stersstercarycary

The Blob

Giant
atomic

grasshoppers

Godzilla Dracula

The pyramids
A pterodactyl

A helium
balloon

3 Venn dia-
gram of Figure
2 with examples
placed in the
cells.

a

b c

a

b c

a

b c

(a) (b) (c)

4 Worked-out syllogism with the three-circle Venn diagram. Regions marked in red are empty.
The premises for each are (a) all b are a, (b) all c are a′, and the conclusion is (c) no b are c.

a

cb cb

cb cb

a

(a) (b)

(c)

aa

(d)

5 Worked-out
four-statement
syllogism with
the three-circle
Venn diagram.
The premises
for each are
(a) some a are c,
(b) some b are
c, and (c) no b
are a. The con-
clusion is
(d) some b
are a′ c.

the issue for us by turning off cell abc. I’ll use green to indi-
cate the cells that are certainly occupied. Figure 5d shows
that both ac and bc must therefore be occupied, while abc
is empty. Thus, the conclusion that “some b are ca′” is also
true, because we have occupancy in cell bc but none in
abc. Therefore, the argument is valid.

How much of nothing do you have?
There’s an interesting subtlety that we need to

address. The Venn diagrams with three overlapping cir-
cles aren’t the only way to draw such things. The idea is
simply to graphically capture the relationships between
collections of objects, with shared characteristics rep-
resented by overlapping sets. We’ll find this more gen-
eral approach useful for our discussion here.

Suppose that we have two premises: “all c are a” and
“all c are b.” This seems to suggest a Venn diagram like
Figure 6a, where c is completely within a, and also with-
in b. Two conclusions we can draw from this diagram
are “some b are a” and “some a are b.”

That’s not quite right, though. Suppose that no ele-
ments of the class c exist. Then the two premises are
both trivially true. After all, if there are no elements c
then anything we assert about them is true. If that’s the
case, though, then the overlap of a and b in Figure 6a is
misleading.

To make this concrete, let’s assign class a to intelligent
things, b to scissors, and c to extraterrestrials. Let’s
assume for the moment that no extraterrestrials exist.
Then I can assert both “all extraterrestrials are intelli-
gent things” and “all extraterrestrials are scissors.”
Remember that since we’ve assumed that there are no
extraterrestrials, both of these statements are defined
to be true according to the rules of if/then statements
that we saw earlier. From these premises we could con-
clude that “some scissors are intelligent things,” which
most people would agree isn’t true.

Lewis Carroll was aware of the subtleties that occur
when things don’t exist. Here’s a scene that appears in

the Mad Hatter’s tea party from Alice’s Adventures in
Wonderland (1865):

“Take some more tea,” the March Hare said to
Alice, very earnestly.
“I’ve had nothing yet,” Alice replied in an
offended tone, “so I can’t take more.”
“You mean you can’t take less,” said the Hatter,
“it’s very easy to take more than nothing.”

You can try to define your way around the problem of
not knowing what to do with nothing, and Carroll did so
in his books. He defined a proposition “some a are b” to
mean three things: “some a exist,” “some b exist,” and
“some a are b.” This approach has its own drawbacks
and hasn’t been widely adopted.

One way to handle this situation is to use a diagram
like Figure 6b. Here we reserve judgment about the over-
lap between a and b until we receive more information.
This diagram can be as misleading as Figure 6a, because
it seems to imply “no a are b.” We should treat this as a
provisional, or working, diagram, pending more infor-
mation that may yet bring regions a and b together.

Although explicitly handling the status of undefined
things is important, it also makes everything a little
messier. For this article, I’m going to adopt Carroll’s
approach. If I make a statement like “some apples are
fruit,” I’ll mean it to imply that there do exist things that
are apples, and things that are fruit.

Four-Venn diagrams
What if we want to show examples of objects that

share four traits? Or what if we want to prove the truth
of a logical argument with four variables? The obvious
answer is to use a four-Venn diagram, the generaliza-
tion of the three-Venn diagram.

Figure 7 shows a reasonable first step, where I took
four circles and overlapped them. Is this actually a
four-Venn diagram? One way to check quickly is to see
if the diagram has the necessary number of cells. But
how many cells should we have?

The easy way to answer this is to think of each cell in
a diagram with n traits as an n-bit binary number. For
example, 0110 would indicate a cell where the second
and third traits were included, but the first and fourth
weren’t. That is, it’s an overlap between just the sec-
ond and third regions. For a diagram with n regions,
we’ll have one cell for every binary combination from
0 to 2n − 1, or 2n cells in all. When n = 4, we should have
16 cells. A quick check of Figure 7 turns up only 14.

What’s wrong? We’re missing two cells: ac and bd.
I monkeyed around with this diagram quite a bit, and

I managed to get one of the missing cells represented.
However, I couldn’t figure out how to create a nice Venn
diagram on the plane just by distorting the circles.

It’s probably worth noting what nice means in this
case. If you look at Figure 1 you can see a couple of
characteristics I’d like to preserve. First, each cell,
including the outermost cell, appears once and only
once. Second, the cell shapes are simple. That is,
they’re not long serpentine shapes that twist around.
Finally, the cells are arranged in a way that matches a

Andrew Glassner’s Notebook

86 July/August 2003

a c b

a c c b

(a)

(b)

6
Inconsistencies
in Venn dia-
grams. (a) An
incorrect dia-
gram that
might seem to
result from “all
c are a” and “all
c are b.” (b) A
correct (but
temporary)
diagram.

gray code. This is a way of counting
in binary such that each number
differs from the previous one in
only one bit. For example, to count
in a 3-bit gray code we’d write 000,
001, 011, 010, 110, 111, 101, 100. If
you look at any two adjacent cells
in Figure 2 you’ll notice that they
have this property, so when we
cross a border, we gain or lose a sin-
gle element: never more, never less.
This creates a nice visual cohesion
in the diagram, so that we can roam
around it with our eyes and see
gradual changes. It also tells us that
objects next to each other in a clas-
sification diagram are similar, dif-
fering only in exactly one trait.

How might we capture these crite-
ria in a four-element Venn diagram?

Figure 8 shows another way to
construct the three-cell diagram,
and Figure 9 shows the result of
applying this approach to four cells.
Unfortunately Figure 9 is still miss-
ing two cells. The lesson I learned
from this is that simply jiggling
around the cell shapes isn’t going
to get us to a four-Venn diagram.
We need a new approach.

In this article I’ve included some
quotes from Lewis Carroll’s books. I
used them not only because they’re
clever and illuminating, but because
Carroll also worked on this problem
of multicell diagrams. In his book
Symbolic Logic, published in 1896,
he presented what he called the
bilateral diagram for solving logical
arguments involving two variables.
Naturally enough, he used the tri-
lateral diagram for arguments in
three variables. Figure 10a (next
page) shows a version of his trilat-
eral diagram and Figure 10b marks
the cells. Figure 11 shows the region
associated with each variable.

Note that Carroll started with a
different approach than that used in
the Venn diagrams. Rather than
drawing regions within an outer
cell, he takes the whole world (the
surrounding rectangle) and cuts it
in half vertically and horizontally,
creating four cells.

Let’s work a syllogism with the trilateral diagram:

1. No pedestrians are pilots.
2. Some babies are pedestrians.
3. No drivers are airplane passengers.
4. Therefore, some drivers are pilots.

Making the symbolic substitutions

1. a = babies,
2. b = pedestrians (b′ = drivers), and
3. c = pilots (c′ = airplane passengers),

we can write the argument symbolically as

IEEE Computer Graphics and Applications 87

acdabcb d

abcab ad

bc cd

a

bcd

c

abcd

(a) (b)

(a) (b)

aabb

bc

c

ac
abc

8 Alternative
way to draw the
three-element
circle diagram
of Figure 1.

a

ab ad

cbbcd

abcd

abd

b d

bc

c

abc abd

(a) (b)

9 Alternative way to draw the four-element circle diagram of Figure 7.

7 Attempt to create a Venn diagram with four circles. (a) Regions and (b) regions with labels.
Note that regions ac and bd are missing.

1. No b are c.
2. Some a are c.
3. No b′ are c′.
4. Therefore, some b′ are c.

Figure 12 works through this argument, and you can
see from Figure 12d that the conclusion is true, so the
argument is valid.

The next step was his quadrilateral diagram, shown
in Figure 13. To add a fourth class of objects, Carroll
drew a new rectangle. Note that the new cell boundary
passes through each of the existing cells once; we’ll see

that this is a general rule for adding new traits to an
existing diagram.

Five and more
We’ve successfully managed to create a diagram for

four variables, so let’s try for five.
You won’t be surprised to learn that Carroll had a go at

this problem. His solution is Figure 14a, where he just cut
each cell in two with a diagonal line. However, I found
the result disappointing. It’s not very nice to look at, but
more importantly, it doesn’t have the gray code property.
To my mind, this makes it almost useless as a visual tool
for anything but the most mechanical of proof checking.
Carroll continued extending his diagrams in the most
straightforward way, as Figures 14b through 14d show.

There’s a nice solution right around the corner,
though. I was looking at Carroll’s quadrilateral dia-
gram and wondered if I could cut through every cell
with a single boundary, as he did to create the quadri-

Andrew Glassner’s Notebook

88 July/August 2003

(a)

(c) (d)

(b)

12 An argument worked out on the trilateral diagram.
(a) No b are c, (b) some a are c, and (c) no b′ are c′.
(d) Putting it all together, we can verify the conclusion
that some b′ are c.

abcd acdabd

abcab

bcb

ad

bcd cdbdd

a ac

c

(a) (b)

13 Lewis Carroll’s four-element quadrilateral diagram showing (a) regions
and (b) labels.

abcac

bcc

a ab

b

(a) (b)

10 Lewis
Carroll’s three-
element trilater-
al Venn diagram
showing
(a) regions and
(b) labels.

(a) (b) (c)

11 Regions of the trilateral diagram. (a) Region a, (b) region b, and
(c) region c.

lateral diagram from the trilateral one.
After a little fooling around with pencil and paper I

came up with the solution of Figure 15. That seems to
satisfy all the criteria, and it’s not bad looking. If you
check, you’ll see that all 25 = 32 cells are present and
appear only once, and that the gray code is satisfied:
each cell boundary changes only one variable.

That got me going. I had to try my hand at six vari-
ables, with the 64-cell result of Figure 16.

I invite you to cook up some logical arguments in five
or six variables and have a go at proving a conclusion with
these diagrams. It’s kind of fun to set up the argument
symbolically (that is, “all b are d”) and then after you have
a bunch of statements, assign properties to them (such
as b = insects and c = carnival attractions). As long as you
create statements that originally make some degree of

sense, you can discover some pretty goofy truths.

Other solutions
You can find other ways to cook up interesting Venn

diagrams. Venn himself suggested a general construction
technique based on his three-circle technique. Figure 17
(next page) shows the steps. We begin with the three cir-
cles in Figure 17a and add a thick half-circle in Figure 17b.
Recall that the general trick is to draw a line that crosses
all the existing cells, so the simplest approach to extend
this is to follow this half-circle, as in Figure 17c. You can
keep going to Figure 17d and beyond, as long as your
patience holds and you can draw the tiny lines between
the curves!

Because Figure 17f is hard to interpret, I created a 3D
version with an extruded view (Figure 18).

This isn’t a terribly nice solution. Could there be other
approaches that retain the nice circular forms of the sim-
ple three-Venn diagram?

IEEE Computer Graphics and Applications 89

(a) (b)

(c) (d)

abcd acdabd

abcab abe

ae ace

abce

bcebe

e ce

bcde

abcdeabde

bdebe

ade acde

cde

bcb

ad

bcd cdbdd

a ac

c

(a)

(b)

15 My five-element Venn diagram based on a square
design showing (a) regions and (b) labels.

14 Carroll diagrams for many variables. (a) Five,
(b) six, (c) seven, and (d) eight elements.

16 My six-element Venn diagram based on a square
design.

In Carroll’s Symbolic Logic, he presents a four-ellipse
solution by Venn, as Figure 19 shows.

More recently, Branko Grünbaum found a lovely
arrangement of ellipses for a five-element diagram,
shown in Figure 20. This approach doesn’t seem to gen-
eralize; I don’t know of any Venn diagrams of six or

more congruent ellipses.
Anthony Edwards developed

another approach recently. The first
two steps are like those of Carroll’s:
take the plane and cut it in half ver-
tically and then horizontally, as in
Figures 21a and 21b. However,
where Carroll places a square,
Edwards places a circle (see Figure
21c). Now draw a big serpentine
curve that cuts all the cells, as in
Figure 21d. To keep going, draw
ever-denser serpentine curves that
follow the circle, as in Figures 21e
through 21i.

This figure meets all of our desires
for a nice diagram. It’s also easy to
program and extend to any number
of terms. Unlike Carroll’s diagrams,
it continues to look good even for

high numbers of terms.
Let’s take a look at proving a logical argument using

a six-term Edwards diagram:

1. No b′ are d′.
2. No g are d f′.
3. No d are f′.
4. Some b are ed.
5. No a′ are dg.
6. Therefore, no a′ are b′ cfg.

Figure 22 (see page 92) plots this argument, and we
can see that the result is true.

Once I had the Edwards diagram programmed, I tried
out a few variations. In Figure 23a I pulled the big blobs
in close to the main circle using circular arcs. I also gave
it a shot using Bezier curves, as in Figure 23b.

I also tried replacing the inner circle with a box. Figure
24 shows the results, where I again used arcs and Bezier
curves in Figures 24a and 24b. In Figure 24c I used
straight lines to join up the regions.

Counting cells
As I mentioned before, a diagram representing n

Andrew Glassner’s Notebook

90 July/August 2003

20 A five-element diagram made out of four congru-
ent ellipses.

18 A 3D version of Figure 17f.

a

b c

d

cdbc

abc

ab

bcd

ad

19 A four-element diagram made out of four congru-
ent ellipses.

17 Venn’s construction for increasing the number of elements beyond
three, based on the original three-circle diagram.

(a) (b) (c)

(d) (e) (f)

object classes will contain 2n cells. I
call the number of elements in a cell
that cell’s density, so a cell with three
items has a density of 3.

It’s interesting to look at the pat-
terns formed by the cells’ density for
different diagrams. Figure 25 (page
93) shows several density diagrams.

Karnaugh maps
Related to Venn diagrams are a

class of diagrams called Karnaugh
maps. Electrical engineers typical-
ly use these to simplify Boolean
circuits. Simplifying a circuit real-
ly just means finding a terse rep-
resentation for the circuit’s truth
states, just as we try to verify a
short statement of truth resulting
from a logical argument.

Figure 26 shows the simplest
Karnaugh map based on just two 1-
bit variables, a and b. The trick with
Karnaugh maps is to try to find the
biggest rectangles of 0s and 1s that
you can. If Figure 26 tells us the out-
put of a circuit K1(a, b), then it’s easy
to tell that K1(a, b) = a. We hardly
needed any fancy tools for this
example, so let’s get a little more
complex.

Karnaugh maps have only two
dimensions, so to represent three
variables we need to bundle them.
Typically we treat the first two as a
pair and the third as a single free
variable, as in Figure 27. Notice that
I laid out the possibilities for ab
along the top line using a gray code,
as we previously discussed. As we’ll
see, this is critical to the technique.

In Figure 27 it’s easy again to spot
the cluster of 1s, which I circled in
red. If Figure 27 represents a circuit
K2(a, b, c) then K2(a, b, c) = b. In
other words, inputs a and c are irrel-
evant, which we can tell by looking
at the diagram.

Now let’s look at a circuit with
four variables. As before, I’ll pair
them up and lay them out in gray
code order, as in Figure 28 (page
94). I decided to simplify this circuit
by identifying rectangles of 1s, and
I found three such rectangles in
Figure 28b. The purple and red rec-
tangles are straightforward, but the four green regions
don’t look much like a single square. To see why we can
consider them squares, take a look at Figure 28c, where
I simply laid out multiple copies of the map side by side.
The gray code layout makes this a valid approach
because even across map boundaries we’re only chang-

ing one bit. In other words, you can pick any 4-by-4
block out of Figure 28c and you’re still working with
the original problem.

In this example, the red rectangle corresponds to c,
the blue one to abc, and the green one to b′. So if Figure
28c is circuit K3 then K3(a, b, c, d) = c + abc + b′

IEEE Computer Graphics and Applications 91

(a) (b)

(c) (d)

(e) (f)

(g)

(i)

(h)

21 Edwards’ development for a
multi-element diagram.

(remember that in this context, + means “or”).
Figure 29 (page 94) shows another pair of four-term

examples. You can see that the larger the blocks, the
simpler the resulting expression.

Figure 30 makes the connection apparent between
Karnaugh maps and the logic diagrams we’ve used so
far. Here I plotted the same data in four visual maps.

Geometry
If you like geometry, you might want to sit down and

figure out how to make an Edwards diagram like the one
I show in Figure 21.

I only had an image to work from and originally
assumed that the curves were just hand-drawn lobes
that looked nice. As I was drawing a version of the dia-

gram for this article, though, it seemed to me that all
the curves were crossing the inner circle perpendicu-
larly to the circle itself. To check this hypothesis, I wrote
a program to draw the curves this way. The results look
great, and it sure beats drawing the image by hand.

Figure 31 (page 95) shows the basic geometry. We start
with a circle P, with center C1 and radius r1, and two points
on that circle, which I labeled A and B. Our goal is to find
circle Q, with center C2 and radius r2. Circle Q crosses P at
points A and B, and is perpendicular to P at each crossing.

To find C2, we can augment Figure 31a with some
extra construction lines, as in Figure 31b. Symmetry tells
us that C2 lies on a line that passes through C1 and point
M, the midpoint of segment AB. From this diagram we
can extract the triangle in Figure 31c. We want to find
the angle ω, which is easy because we know the lengths
of all three triangle sides:

From Figure 31b we can also extract the triangle in
Figure 31d. Note that α = (π/2) − ω. The Law of Sines
is useful here; recall that it tells us that in any triangle,
the ratio of the length of any leg to the sine of the angle
opposite it is the same for all three legs. Using this, we
can write

r r d2 1

2sin sin sin /ω α π
= = ()

ω =
−

−

−tan 1

1

A M

M C

Andrew Glassner’s Notebook

92 July/August 2003

(a) (c)

(e) (f)(d)

(b)

22 Argument
plotted on
Edwards’ dia-
gram. (a) No b′
are d ′, (b) no g
are d f ′, (c) no d
are f ′, (d) some
b are ed, and
(e) no a′ are dg.
(f) The five
statements
taken together
prove the con-
clusion that no
a′ are b′ cfg.

(a) (b)

23 Variation on Edwards’ development for a multi-
element diagram. Here I’ve kept the circle for the third
element, but wrapped the other curves more closely
around it. (a) Using circular arcs and (b) Bezier curves.

(a) (b) (c)

24 My variants
on Edwards’
development in
Figure 22.
(a) Using arcs
for the curves,
(b) Bezier
curves, and
(c) straight
lines.

Since sin(π/2) = 1, we have

This gives us the distance d from C1 to C2. Now we find
the radius r2, which also comes from the Law of Sines
relation:

r2 = d sin ω

To actually find the center C2, we just find the vector
from C1 to M, normalize it to unit length, and then scale
it up by the distance d:

d
r r

= =
() −()

1 1

2sin sin /α π ω

IEEE Computer Graphics and Applications 93

0

0

0

1 1

1

0 1
a

b

0

0

0

1 1

1

0

a

b

1

(a) (b)

26 A two-term Karnaugh map K(a, b) = a. (a) Map and
(b) a rectangle of 1s.

(a) (b) (c)

(d) (e)

(g)(f)

25 Identifying the number of ele-
ments in each region. White repre-
sents zero elements, then yellow,
blue, red, green, maroon, and
orange represent one to six ele-
ments, respectively. The following
are Venn diagrams: (a) three-
element circular, (b) three-element
rectangular, (c) four-element rectan-
gular, (d) five-element rectangular,
and (e) six-element rectangular.
(f) The eight-element Edwards
diagram. (g) One of my variants on
the eight-element Edwards diagram.

ab

c
0

0

0

1 1

1

00 01

1

1 0

0

11 10

(a)

0

0

0

1 1

1

00 01

1

1 0

0

11 10
ab

c

(b)

27 A three-term Karnaugh map K(a, b, c) = b. (a) Map and (b) square of 1s.

Now that we know C2, we can draw the Edwards diagram.
We just choose alternating arcs (the one inside the circle
and the one outside) as we work our way around the
inner circle, stepping points A and B in equal increments.

You can create as many generations of the Edwards
diagram that you want by simply chopping the big cir-
cle into smaller pieces. I created all of the Edwards-style
figures in this article with this algorithm.

Debugging graphical programs like this can be as
much fun as making them. While I was getting a gen-
eralized version of this to work for Figures 21 through

C C d
M C

M C
2 1

1

1

= +
−

−

Andrew Glassner’s Notebook

94 July/August 2003

1

00 01 11 10

00

cd

ab

01

11

10

1 0 1

1 1 1 0

0 0 0 0

1 0 0 1

a b

dc

(c)

(d)

(a)

(b)

a

a d

b c

b

dc

30 The same four-element data in four different visual
representations. (a) Karnaugh map, (b) Carroll’s quadri-
lateral diagram, (c) Venn’s four-ellipse diagram, and
(d) Edwards’ four-element diagram.

ab

cd

1

1

00

01 0

1

00 01

0

0 1

1

0

1

11

10 0

0 0

0 1

0

11 10

ab

cd

1

1

00

01 0

1

00 01

0

0 1

1

0

1

11

10 0

0 0

0 1

0

11 10

a'b'c' +' a'c'd' + a'b'd'
+ ab'c' + a b'd' (ab+bd+cd+bc)'c)'

(a) (b)

29 Two more four-term Karnaugh maps. (a) K(a, b, c, d) = a′ b′ c′ + a′ c′ d′ +
a′ b′ d′ + a b′ c′ + a b′ d′ and (b) K(a, b, c, d) = (ab + bd + cd + bc)′.

ab ab

cd cd

1

0

00

01 0

0

00 01

0

1 0

1

1

1

11

10 1

1 1

1 1

1

11 10

1

0

00

01 0

0

00 01

0

1 0

1

1

1

11

10 1

1 1

1 1

1

11 10

1

0 0

0 0

1 0

1

1

1 1

1 1

1 1

1

1

0 0

0 0

1 0

1

1

1 1

1 1

1 1

1

1

0 0

0 0

1 0

1

1

1 1

1 1

1 1

1

1

0 0

0 0

1 0

1

1

1 1

1 1

1 1

1

(a) (b)

(c)

28 A four-term
Karnaugh map
K(a, b, c, d) =
c + abc + b′.
(a) Map. (b) A
2-by-4 rectan-
gle, a 1-by-2
rectangle, and a
2-by-2 square of
1s. (c) Seeing
the green
squares in
Figure 28b by
placing copies
of the map side
by side.

24, I generated a whole lot of interesting outtakes;
Figure 32 shows some of my favorites.

3D
Now that we’ve talked about creating Venn diagrams

in the plane, how about going into 3D? Are there any
interesting developments to be found by drawing our
diagrams on the surface of 3D objects such as spheres
and donuts? How about creating bonafide 3D diagrams,
say by replacing the circles of the classic three-Venn dia-
gram with spheres?

I’ve toyed around with these ideas a bit, and hope to
report on what I’ve learned in a future article. Until then,
I invite you to think about it yourself and see if you come
up with any new insights. �

Acknowledgments
Thanks to Steven Drucker for helpful advice, and my

brother Bruce Glassner for a thoughtful reading of this
article and excellent suggestions.

Readers may contact Andrew Glassner at andrew@
glassner.com.

IEEE Computer Graphics and Applications 95

(a) (b)

(c) (d)

A

B

A

B

M

r1

C1

r2

C2

r1

C1

A

ω ω α

MC1 C1 C2

r1

A

d

r1 r2

r2

C2

Circle P

Circle Q

Circle P

Circle Q

31 The geometry for Edwards’ construction of Figure 21. (a) The main
circle P and the two points A and B that we’re given as well as the circle Q
that we want to find. (b) Some labels. Point M = (A + B)/2. (c) Triangle
extracted from (b). (d) Another triangle from (b).

Further Reading
One of my primary references for this article

was Frank Ruskey’s excellent article, “A Survey of
Venn Diagrams” (The Electronic J. of
Combinatorics, February, 1997). Ruskey goes
into much more detail on many of the topics
I’ve covered here. It’s available online at
http://www.combinatorics.org/Surveys/ds5/
VennEJC.html.

Branko Grünbaum’s ellipses in Figure 20 were
originally published in his article, “Venn diagrams
and Independent Families of Sets,” (Mathematics
Magazine, vol. 48, Jan.–Feb. 1975, pp. 12-23).

The construction of Figure 21 due to Anthony
Edwards appears in his “Venn Diagrams for Many
Sets” (New Scientist, 7 Jan. 1989, pp. 51-56).

Karnaugh maps were first introduced in
Maurice Karnaugh’s classic paper, “The Map
Method for Synthesis of Combinational Logic
Circuits” (Trans. Am. Inst. Electrical Engineers, part
1, vol. 72, no. 9, 1953, pp. 593-599).

Lewis Carroll’s Symbolic Logic was originally
published in 1896. It has been reprinted in a
single volume called Symbolic Logic and Game of
Logic (Dover Publications, 1955). The second
half of this book contains hundreds of
syllogisms; the author intended to help readers
develop fluency with the notions and the
mechanics by making syllogism solving a two-
player competitive game.

My quotes from Lewis Carroll’s books Alice’s
Adventures in Wonderland (1865) and Through
the Looking-Glass (1872) came from the public-
domain editions of these classics at Project
Gutenberg: http://www.gutenberg.net.

32 Some outtakes. These pictures came up while I was debugging the
program that drew Figures 21 through 24. It’s always surprising to me how
simple changes in the code can produce such different results.

