
From Ovid to Kafka, the idea of metamorphosis has
been a powerful literary metaphor. More recently it

has become a common but strong visual device.
Image metamorphosis became a sensation in 1992

when Pacific Data Images produced Michael Jackson’s
video Black or White, which showed a variety of very dif-
ferent people seamlessly changing from one into anoth-
er. In almost no time at all, morphing was everywhere
from movies to television.

Image morphing is an artist-driven process. A creative
human being looks at the images (or sequences) to be
bridged and determines a way to make the changes that
will be pleasing to the viewer and harmonious with the
piece. To help these artists, I’ve developed a technique
for automatically and smoothly turning one convex 3D
shape into another. Like any automatic morph method,
this technique should be viewed as a tool and not a self-
guided process.

The critical reason for this is that a morph doesn’t
simply transform two images or shapes. Much more sig-
nificantly, it says something about those shapes. If I turn
a human face into another human face, I’m saying that
these faces are essentially similar and that I only need to
make small changes to turn one into another. That was
the whole message of Black or White, and it’s why the
technique was so perfect for that subject.

Suppose that we want to turn a picture of a giraffe
into a picture of a rhinoceros. We’d probably turn the
giraffe’s body and feet into the rhino’s body and feet,
which implicitly tells the viewer that these are both
quadrupeds. So we’re saying something by choosing
what goes to what.

Now suppose we’re working on a movie where the evil
villain keeps a rattlesnake as a pet, and at one point we
want to morph from the snake into its owner, a guy hold-
ing a gun. We could turn the snake’s head into the man’s
head and grow arms and feet from the rest of the snake’s
body. But we might want to emphasize the bad guy’s

nature by turning the snake’s rattle into his head. Or we
might choose to turn the snake’s rattle into the gun and
grow the other body parts from the snake’s body. These
are all pretty cheesy transformations from a storytelling
point of view, but each one says something different
about the correspondence between the snake and the
man and his weapon. There’s no way a computer can
choose among these for us; it’s an artistic decision moti-
vated by what we want the transformation to say.

Figuring change
The problems of artistic choice in a transformation

are no less important for shapes than they are for
images. The essential problem involves feature match-
ing—determining which elements of one shape should
correspond to elements of the other shape.

We can use automatic feature-matching tools to get
a good starting guess, which can later be adjusted by an
artist. Alternatively, an artist can use a program to man-
ually correspond features (for example, by telling the
computer that the front left foot of a giraffe should turn
into the front left foot of a rhino). Then the computer
can do its best to make the rest of the shape move in a
reasonable while respecting these features.

Working in 2D
Let’s look at how people have done things in 2D.

Perhaps the simplest way to transform two polygonal
shapes S0 and S1 is to require that they each have the
same number of vertices, numbered clockwise, and
identify the first vertex v0 in each shape. Then to morph
the shapes, we move v0 from its position in S0 to its posi-
tion in S1, and repeat this process with all the other ver-
tices. The result is often acceptable as long as the two
shapes are pretty simple, as in Figure 1.

However, requiring both shapes to have the same
number of vertices is a tough constraint, often meaning
we have to manually add or remove vertices to get the

Andrew
Glassner

DMorph__

Andrew Glassner’s Notebook
http://www.glassner.com

78 September/October 2003 Published by the IEEE Computer Society 0272-1716/03/$17.00 © 2003 IEEE

1 A simple 2D morph between two shapes with the same number of vertices.

right number on each, which can be a lot of work for big
shapes. An alternative is to compute the least common
multiple of the number of vertices in each shape. For
example, if S0 has five vertices and S1 has 13, then their
least common multiple is 65. A system can run around
each shape and automatically insert vertices between
the existing ones to bring both up to 65. Typically it tries
to spread them out as evenly as possible. Figure 2 shows
a result of this process for two similar figures and it looks
pretty good.

Unfortunately, when the figures are dissimilar, the
results are much more disappointing, as Figure 3 shows.
The tangled knot that appears at the halfway point is a
common result of this technique.

We can look at this problem in several ways, both
manually and automatically. For example, Tom
Sederberg and colleagues took a sophisticated approach
that involved blending the edge lengths and vertex
angles of the two shapes being morphed (see the
“Further Reading” sidebar for more information).

The automatic morphing problem is tough because
algorithmic solutions can’t substitute for artistic judg-
ment, and manual solutions are very time-consuming
and repetitive.

Working in 3D
The 3D morphing problem is just like the 2D morph-

ing problem, only a lot harder.
Many 3D systems let us easily transform one shape

into another as long as they both have the same num-
ber of vertices, arranged into the same number of faces.
Such packages let animators create “morph targets” that
they can then blend together. For example, we might

carefully construct a 3D model of someone’s face. We
could then painstakingly move the vertices of that face
around so that the person is smiling happily and save
that as the “smile” target. Simliarly, we could make tar-
gets for “frown,” “grin,” “cry,” and so on. Then if some-
one walks into a birthday party and cries with pleasure,
we might tell the system to take the original, neutral face
and add in 50 percent of the displacement to get to the
“happy” face and add another 50 percent of the dis-
placement to get to the crying face. For a real perfor-
mance the technique is much more subtle, but the basic
idea stays the same.

This morph-target approach is useful for lip-synching
animated characters. The animator makes targets for
the standard mouth positions (such as pursed lips for
“o,” and tongue between the the teeth for “th”), and then
dials in the appropriate target to match the words in the
soundtrack.

IEEE Computer Graphics and Applications 79

2 A morph where the system inserted new vertices into both shapes so they both had the same number of points.

3 Automatic morphs often get tangled up in the middle as vertices pass through each other en route to their
destinations. Read the figure clockwise, as indicated by the arrow.

Further Reading
You can read about Tom Sederberg’s blending algorithm in “2D

Shape Blending: An Intrinsic Solution to the Vertex Path Problem,” by
T.W. Sederberg et al., Proc. Siggraph 93, ACM Press, 1993, pp. 15-18.

A great VRML library of polyhedra is at the kaleido Web site:
http://www.math.technion.ac.il/~rl/kaleido/.

The Geometry Center, as always, provides a great resource at
http://www.geom.uiuc.edu/software/weboogl/zoo/polyhedra.wrl.
html.

The sculptor George Hart provides a huge number of
polyhedra—including many obscure ones—at http://www.
georgehart.com/virtual-polyhedra.

Morph targets don’t work well when the models don’t
have the same topology (that is, the same numbers of
vertices connected the same way into faces). Many sys-
tems don’t support morphing at all when the topologies
are different. Part of the problem is that there’s just no
clear way of making the shapes match: How would you
morph a beach ball into a doughnut? In 2D, we could
run around the shape’s perimeter and add new vertices
as needed. But in 3D, choosing the locations of new ver-
tices isn’t well specified.

Even when the models have the same topologies, if
the deformation from one morph target to the next is
too extreme, the shape can crumple into itself just like
the 2D example of Figure 3.

I can think of several ways to fix this problem, and it’s
fun to dream up heuristics that work in one kind of spe-
cial case or another. As yet, though, nobody’s found an

automatic method that’s both gen-
eral and efficient enough to be wide-
ly adopted.

DMorph
I wanted to find an automatic

technique for morphing polygonal
objects that wouldn’t demand that
the shapes have the same numbers
of vertices and faces, nor require any
kind of feature matching. Being
automatic, it would be appropriate
either for things that happen in the
background, or as a starting point
for manual tweaking.

The method, which I call DMorph,
is robust and fast. It has one impor-
tant limitation, though: it only works
for convex objects (objects that don’t
have holes or indentations). One way
to test whether an object is convex is
to imagine moving around inside it
with a piece of string. Pick any two
points inside the object and pull the
string taut between them. If the
string never goes outside the shape
for any pair of points, then it’s con-
vex. (Otherwise, we say it’s noncon-
vex, or concave.) Convex objects can
have flat sides, like a cube, or they can
be curved, like a sphere. Convex
objects include soccer balls, loaves of
bread, and dice. Objects like bagels,
puppies, and chairs are concave.

Another helpful way to think about
convexity is to start with a convex
blob (say a big sphere) and slice off a
piece of it with a straight edge. As
long as that’s all you do, your object
will still be convex after every slice.

Let’s get a feeling for DMorph with
a 2D analogy—we’ll turn a triangle
into a rectangle. Note that these two
shapes have different numbers of
points and edges. Rather than repre-

sent the triangle as three vertices and the three edges that
join them, I’ll instead represent it as the intersection of
three planes. Figure 4a shows the idea. We build three
planes perpendicular to the paper’s plane. Each one cuts
the paper into an inside in front of the plane and an out-
side behind it. The triangle is the paper region that’s inside
all three planes. Figure 4b shows the same thing for our
rectangle, which is defined by its own set of four planes.
We’ll create our morphs by moving these planes around
and finding the area inside them.

We begin by taking the triangle’s four planes and mov-
ing each one until it hugs the rectangle as closely as pos-
sible, as in Figure 5. Although in the figure I’ve drawn
the planes with line segments, in theory they go on for-
ever in both directions. So all we need to do is move each
plane forward (or backward) along its normal until it’s
got the rectangle sitting right on its positive side.

Andrew Glassner’s Notebook

80 September/October 2003

(a)

(b)

4 Defining
convex objects
as the intersec-
tion of planes.
(a) A triangle
made by three
planes. (b) A
rectangle made
by four planes.

(a) (b) (c)

(d)

5 (a–c) Moving the triangle’s three planes along their normals until they just enclose the rec-
tangle. (d) Final position of the planes.

The result is in Figure 5. These are
the ending positions for the three
planes that define the triangle. Their
starting positions are where they sit
to define the triangle—that is,
where they appear in Figure 5a.

Now we do the same thing for the
rectangle’s planes. This time their
positions in Figure 6a are their end-
ing positions. We move each plane
forward or backward until it abuts
the triangle on its positive side,
which marks its starting position.
Figure 6e shows the result. Note that
this isn’t just a scaled version of the
rectangle. Because each plane moves
individually, the shape formed by
the planes in these positions is only
reminiscent of the original rectangle.

That’s the entire setup. To create
the morph, we simply move all
seven planes in unison from their
starting positions to their ending
positions. The shape formed by their
intersection is the morph.

Figure 7 shows this in action. The
red planes came from the triangle,
and the blue ones came from the rec-
tangle. I’ve marked the starting posi-
tion of each plane with a pair of dots.
You can see that at each step we just
move each plane along its normal,
and the shape that’s formed inside
them is the morph at that step.

Figure 8 shows the shapes from
this process stacked so you can see
how they change over time.

That’s it! In 3D, it’s precisely the
same algorithm, except we use 3D
planes and 3D vertices. Just treat
each face of the starting polyhedron
as a plane and move those planes
from their starting locations to the
spots where they just barely enclose
the ending polyhedron. At the same
time, move the planes defining the
ending polyhedron from their loca-
tion just outside the starting shape
to their resting spots.

Figures 9 through 14 (next page)
show a variety of 3D morphs. To
make a chain of more than two
transformations, just string togeth-
er a series of two-object morphs. You
can download an animation of these
objects morphing together from the
IEEE Computer Graphics and
Applications Web site (see http://csdl.computer.org/
comp/mags/cg/2003/05/g5toc.htm).

Note that the objects don’t have to be in any specific
position relative to each other. If you’re morphing a
lemon at one end of a table into an orange at the other

end, the intermediate shapes will be nice blends of the
two shapes and will appear on the table moving from
one location to the other.

Of course, you could extend this algorithm easily to
handle three or more shapes, which you can blend

IEEE Computer Graphics and Applications 81

(a) (b) (c)

(d) (e)

6 (a–c) Moving the four planes of the rectangle along their normals until
they just enclose the triangle. (e) Final position of the planes.

7 During the transformation we move each plane from its starting location to its ending loca-
tion. The morph is that region of space on the positive side of all the planes.

8 Two views of
the morphs of
Figure 7 stacked
on top of each
other.

together to any degree you wish.
The algorithm is nice because it doesn’t require any-

thing except the two objects, and they don’t need to have
any specific properties except that they’re both convex.

Programming
I implemented an early version of this idea many years

ago in the Cedar programming environment at Xerox
PARC. I had to write my own code to create the models,
find the planes, clip polygons, fill holes, find volumes of
intersection, and more. Some of these steps are tricky,
because special cases can wreak havoc on the integrity
of your models. This algorithm invites some of those
special cases.

For example, suppose you’re in the process of con-
structing a morph. You have a 3D polyhedron and a plane
and you want to cut away those parts of the polyhedron
that are in the back of the plane. Easy enough, except
when one or more vertices is just touching the plane.
Then numerical precision becomes important. Just as
important is numerical consistency. If the vertex is con-
sidered to be just barely in front of the plane for one poly-
gon, it should be evaluated the same way for the next
polygon. This becomes an even more critical problem
when a polygon lies just about in the plane itself. You
must be careful to classify all the vertices the same way
and do it consistently.

You can get all of these details right, but it’s hard work.

Andrew Glassner’s Notebook

82 September/October 2003

9 Six steps in a 3D morph from an icsoahedron to a truncated dodecahedron.

10 Six steps in a 3D morph from a small rhombicuboctahedron to the dual of a great rhombicosidodecahedron.

11 Six steps in a 3D morph from a small rhombicosidodecahedron to the dual of a twisted pentagonal prism.

12 Six steps in a 3D morph from a great rhombicuboctahedron to the dual of a truncated dodecahedron.

13 Six steps in a 3D morph from a snub dodecahedron to a truncated tetrahedron.

14 Six steps in a 3D morph from a great rhombicosidodecahedron to a cube.

Life is much better when you can get someone else to do
the hard work. To that end, the code I wrote for this col-
umn is actually in three pieces, each in its own language.

VRML to text via Perl
I wanted to test the algorithm with a bunch of com-

plex but interesting models. Many cool convex polyhe-
dra are available for free on the Web in Virtual Reality
Modeling Language (VRML) format. I decided they
would serve as my test objects. I chose to make my life
easy by using text-only VRML files that contain a single
object in point-polygon format.

To process a model, I read in the VRML file, and then
search it for the pieces I need using a little script writ-
ten in Perl. To get the vertices, I look for a list of num-
bers in square brackets preceded by the keyword
Coordinate. To find the polygons, I similarly look for a
list of numbers in square brackets preceded by the key-
word CoordIndex. In both cases I simply pull out the
numbers in brackets, apply a little reformatting to them,
and then print them out to a new text file.

Text to MAXScript via C#
The next stage of the system takes that text file and cre-

ates a new text file in the MAXScript language, used by
Discreet’s 3ds max 5. This program is written in C#. I read
in the text files for the two objects I want to morph, and
for each one I compute the planes that make up the object.

To find the plane for each polygon, I just take the first
three points of the polygon. (If they’re colinear, I keep
moving the three-point window forward until I find
three points that aren’t colinear.) Let’s call these points
v0, v1, and v2. I find the vectors A = v1 − v0 and B = v1 − v2,
and find their cross product C = A × B. I normalize C by
scaling it to a length of 1, giving me the plane normal
N. Any point P on the plane satisfies the plane equation
N ⋅ P + d = 0, so I plug in v0 for P and solve for d. Together,
N and d tell me how this plane is oriented in space and
how far it is from the origin.

Once I have all of the planes for both objects, it’s time
to find their starting and ending positions. Since the
planes don’t rotate, all I need to find are the values of d
that specify these two extremes; I call them d0 and d1.
Each plane moves during a morph from d0 at the start
to d1 at the end. This is why I call the algorithm DMorph.

Let’s start with the first object, S0. Because its planes
begin where they were computed, I set d0 = d for each
plane. To start the process of finding d1 for this plane, I
grab the first vertex of S1 and move the plane so it includes
that vertex. Then I test every remaining vertex S1 one by
one, and if it’s on the negative side of the plane, I move
the plane by computing a new value of d so it includes the
vertex. When I’m done, I save the final value of d for that
plane as d1. I repeat this process for all the planes in S0.

The planes for S1 are handled the same way, but in
reverse. I move each plane when needed so all the ver-
tices of S0 are on its positive side, and I save its original
value in d1 and the computed value in d0.

Next I merge the two lists of planes together. From
now on, the fact that they originally belonged to two dif-
ferent objects is lost. All I need now is this one combined
list of planes.

Now I open up a new text file and start writing
MAXScript into it. Let’s suppose that I’ve told the pro-
gram to create an animation that takes n steps to go from
the start shape to the ending shape. For each frame f
from [0, n) the process is the same.

I first create a large box, centered at the origin (I call
this box the marble, like the slab of marble a sculptor starts
with before he starts cutting away at it). Then I compute
α = f/(n − 1), which gives me a floating-point number
from 0 to 1 telling me where I am in the animation. For
each plane in the combined list, I compute the value of d
at this time as df = d0 + α (d1 − d0). To cut the marble using
this plane, I use a technique provided by 3ds max called
a slice modifier. This is a plane that you can set up to cut
the model and remove everything behind it.

I create a new slice modifier for each plane. Using the
plane’s normal and this value of df, I build up matrices to
rotate and position the slicer so it’s sitting where the plane
is located. I then tell 3ds max to cap any holes produced by
the slicing (using a cap_holes modifier), and then I col-
lapse the modifier stack so that I’m back to just a single,
simple object. Then I cut it again with the next plane, and
so on again and again until I’ve processed every plane. The
last step is to tell the program that this cut-up box is visi-
ble at frame f, but invisible at all frames before and after.

Now I deselect the box, increment the frame counter
f, and start over again with a new piece of marble.

MAXScript to image
This is the easy part. I just open up 3ds max and tell

MAXScript to evaluate the text file produced by the pre-
vious step. After a little chugging away, the result is an
animation of the first shape turning into the other, ready
for rendering.

Because I can rely on 3ds max to handle all the deli-
cate work of numerical accuracy and stability in the clip-
ping phase, I save myself a ton of hard work. This is a
really satisfying way to do geometry!

Wrapping up
Like any algorithm, DMorph has pros and cons. On

the pro side, it’s satisfyingly simple and robust and easy
to program. It doesn’t place any constraints on the two
objects being interpolated except that they’re convex.
One object can be a 200-sided cone where 200 polygons
all share a single vertex, and the other object a baseball,
and the algorithm doesn’t care. There’s no feature
matching, automatic or otherwise. The transformations
are smooth, and the blending looks nice.

On the con side, the program is limited to convex
objects. If you look around, you’ll probably see few con-
vex objects in the environment around you. Umbrellas,
trees, and paper clips are all concave. So are pianos, peo-
ple, and giraffes. DMorph doesn’t help us with these
objects, much less any really wacky transformations that
we might want to do, such as turning a paper clip into
the Golden Gate Bridge.

That’s okay, though. It just means we have another
interesting problem to think about. �

Readers may contact Andrew Glassner at andrew@
glassner.com.

IEEE Computer Graphics and Applications 83

