
Ilove letters. From the squiggly g to the stately m, our
modern alphabet offers a wealth of beautiful shapes.
One of the great benefits of the revolution in desktop

publishing is that it has opened up the doors of typeface
design to anyone with a computer and patience. Talent
and a sense of aesthetics aren’t required to create a valid
typeface, but they don’t hurt.

Dozens of Web sites offer visitors thousands of free type-
faces (see the “Further Resources” sidebar for pointers to
all the sites mentioned in this article). Most of these free
fonts are the work of inspired amateurs who had an idea
for a typeface; they created it using commercial design
tools, and then released their work into the world. You can
also buy collections of typefaces on CD compilations, sav-
ing you the trouble of downloading them one by one.
Commercial foundries offer many professional typefaces
as well, created by skilled and trained designers.

I love browsing new typefaces and collecting the ones
I like. This collecting pays off when a graphic-design job
requires me to pick just the right typefaces to go with
the artwork, text, and overall feel of the piece.

I’m pretty discriminating in what I choose to save from
public-domain sites, but when I find one that I like, I
download it for my collection. The quality of the typo-
graphical information provided with a free font varies:
few include kerning information, it’s rare to see any kind
of layout hinting, and most are missing at least a few
characters like ampersands or semicolons. But if you’re
willing to live with these limitations, you can find some
great designs.

Between the free typefaces I’ve saved from the Web,
those that I’ve gotten with magazine CDs or packages
I’ve purchased, and the commercial typefaces that I’ve
bought for specific jobs, I’ve now got more than 9,000
typefaces on my computer.

Of course, they’re not all installed. Every typeface
installed in an operating system consumes system
resources, and slows down everyday tasks. Happily, sev-
eral programs exist that let you browse through all the
font files on your computer.

Even with one of those programs, 9,000 typefaces is a
lot to look through. In practical terms, it’s way too many.
I recently designed a logo for a company, so I had to look
for a good typeface for the company name. Using a com-
mercial font browser, I set the name of the company in
the preview window, and then stepped through every

typeface on my hard drive so I could see how the name
looked in that font. Because I had to visually consider each
one, my top speed was about 2 fonts per second. A little
math shows that if I ground through without a single
break, I could have theoretically looked them all over in
about an hour and a quarter. In reality, my eyes glazed
over after a few minutes, and it took about four hours to
consider the whole collection. When I finally finished
looking through everything, I knew I never wanted to go
through that again.

Categories
Nobody wants to sort through 9,000 typefaces every

time they get a new job. Commercial foundries often label
their work with a wide variety of keywords to make them
easier to find. For example, Apple uses 28 different cate-
gories such as Blackletter, Cyrillic, Glyphic, Monospaced,
Opticals, Ornamentals, and Swash. Planet typography
has a different set of categories, but just as useful.

Searching through categories is great when you have
a general feeling for what you want, and all of your fonts
have been given useful and accurate labels. Unfortu-
nately, free fonts rarely come categorized. In my collec-
tion, I have only a few hundred commercial typefaces;
the rest are nothing more than a family name and, if I’m
lucky, an indication of whether the font is regular, bold,
or italic.

I thought about sitting down and going through all
my typefaces and assigning categories to them. This
wouldn’t be difficult, but it would be colossally boring
and time consuming. I could get a reasonably good list
of categories from any of the commercial catalogs, but
assigning them one by one to each face would take for-
ever. Even if I wrote a program to help me out, I figured
it would take at least a whole day to go through every-
thing. Even then, a huge number of the public-domain
typefaces are so oddball that they would end up in the
miscellaneous or novelty categories, which would defeat
the whole point of the exercise.

My next thought was to write a program to do this
categorization for me, but I threw that idea out almost
immediately. The categories for many typefaces are
subjective, and even the most common ones can be
unclear. For example, consider the letters in Figure 1
and ask yourself which ones should be labeled as serif
or sans-serif fonts (broadly speaking, the serif is the lit-

Andrew
Glassner

About Face __

Andrew Glassner’s Notebook
http://www.glassner.com

86 January/February 2004 Published by the IEEE Computer Society

tle flare at the ends of lines, like the foot at the bottom
of the letter F in Figure 1a). Reasonable people can hold
different opinions on which of these letters have serifs
and which don’t, and there’s no way a computer can
reliably settle these disputes. Writing a program to reli-
ably detect serifs in even the easiest cases still seems
pretty hard to me.

Metrics
If deciding whether a character has serifs is hard,

imagine how much tougher it would be to categorize a
typeface as handwritten or brushstroke. Automating
these types of quality distinctions is nearly impossible.
Yet I wanted a procedural way to sort through my font
collection. So rather than automatically assigning qual-

IEEE Computer Graphics and Applications 87

Further Resources
To create the figures for this article, I used display fonts

taken from ClickArt Fonts 2 (published by Broderbund,
2003) and the 2000 Font Collection (published by
Greenstreet, 2003). Many of the fonts on these CDs are also
freely available on the Web, but it’s still worth buying the
packages. It’s more convenient than downloading them all
one by one, and these companies seem to spend some time
cleaning up the font files.

Many free fonts available online have corrupted or badly
formed descriptors in the file, which means that some
programs can’t use a given typeface. Of course, you only
discover the failures when you’re trying to finish a project
only moments before the deadline.

I’ve had no problem reading any of the fonts on these
compilation CDs, which makes them worth the purchase
price to me. Be aware that the quality of the fonts in these
collections tends to vary considerably.

You can read about the type metrics saved in Adobe fonts
in the document “Adobe Font Metrics Format Specification
File” by Adobe Systems. Version 4.1 is available online at
http://partners.adobe.com/asn/developer/pdfs/tn/5004.
AFM_Spec.pdf.

The Panose specifications are laid out in the “Panose 2.0
White Paper” by Michael S. De Laurentis. It’s available at
http://www.w3.org/Fonts/Panose/pan2.html. Another
source for Panose data is the “Panose Classification Metrics
Guide” available online from AGFA Monotype at
http://www.panose.com/hardware/pan1.asp.

Many great tools are available for browsing fonts on your
computer. On my PC I use Printer’s Apprentice (http://
www.loseyourmind.com). Other popular tools are
Typograph for the PC (http://www.neuber.com/typograph),
and Font Book for the Mac (http://www.apple.com/macosx/
features/fontbook).

You can see the type classifications used by Apple at

http://www.adobe.com/type/browser/classifications.html,
and those used by Planet Typography at
http://www.planet-typography.com/manual/families.html.

If you’re looking for the name of a particular typeface,
check out two great Web sites. Indentifont asks you a series
of questions based on the qualities of the typeface you’re
looking at (http://www.identifont.com). What The Font?!
lets you upload an image of a few characters and responds
with the name of the typeface (http://www.myfonts.com/
WhatTheFont).

If you enjoy the thrill of the hunt, and discovering new
amateur typefaces as they’re developed, lots of sites exist
that collect these typefaces, often providing versions in
both PC and Macintosh formats. DaFont
(http://www.dafont.com/en), and Abstract Fonts
(http://www.abstractfonts.com/fonts) both sort the
typefaces by category. Other sites I periodically check are
High Fonts (http://www.highfonts.com), and 1001 Fonts
(http://www.1001fonts.com). Once you’ve browsed the
collections at these sites, most let you sort by date, so you
can quickly catch up on what’s been added since the last
time you stopped by. Many other smaller sites specialize in
different varieties of typefaces.

Of course, don’t forget professional, commercial fonts.
You must pay for these, but your money buys you a high-
quality typeface with sophisticated kerning and hinting
information, ligatures, and other professional details that
will make your typeset work look professional and polished.
The Adobe Type Library provides a wide variety of quality
typefaces (http://www.adobe.com/type/main.jhtml). A
good consolidated source of fonts offered by many different
foundries is MyFonts (http://www.myfonts.com).

A nice general resource for typefaces is at
http://jeff.cs.mcgill.ca/,luc/classify.html. You can find a nice
collection of pangrams at http://rinkworks.com/words/
pangrams.shtml.

1 Serifs for the letter F. The top row goes from a letter with clear serifs on the left to a sans-serif letter on the right.
On the bottom row, you could argue about whether these have serifs at all. Top row fonts: Amery, Freeman
Condensed, Antique, Loose Cruse, Castle, Architect, and Adams. Bottom row: Cowboy, Epic, Cocoa, Adorable,
Freedom 9, Amaze, and Banner Light.

itative descriptions and labels, I decided to see how far I
could get with simple numerical measures.

Of course, other people have looked into developing
numerical measures, or metrics, for typefaces. The
Panose system specifies about 65 measurements to help
describe and distinguish a font.

Panose was designed for Latin typefaces only, so it’s
not applicable to typefaces for languages like Hebrew
and Kanji. A Panose description of a Latin Text face is
made up of 10 numbers, one each for the type of family,
serif style, weight, proportion, contrast, stroke variation,
arm style, letterform, midline, and X-height. To each of
these categories the system assigns a number, drawn
from a list of standardized values. For example, family
type is set to 2 for Latin Text, and serif style is set to 5 if
the serifs are of the form the Panose documentation calls
“obtuse square cove”. If you’re looking for a particular
typeface, you can figure out what its Panose code would
be, and then use that code in a directory of fonts to see a
sample and identify its name.

Another approach to identify a font is to use a tool that
tries to work backward from one or more characters. The
Identifont Web site leads you through a series of ques-
tions about the shape and style of different characters.
Using a process of elimination, the site eventually iden-
tifies the typeface by name and foundry. If you’re just
browsing for something interesting, you can answer the
questions according to your intuition or how you think
your desired font would look, and see what it gives you.

If you have a sample in-hand, you can submit it to the
What The Font?! site. You simply upload an image of a
type sample you have, and it will look through its data-
base to name the font for you.

Neither of these approaches is quite as nice as hunt-
ing through a wide variety of typefaces all at once and
choosing among them, like flipping through the pages
of a catalog. I wanted to try creating a system that would
let me characterize my intentions in some general, high-
level way and browse through the typefaces that match
those goals, yet not require me to hand annotate every
typeface in my collection with one or more descriptive
labels.

I decided to cook up a bunch of
different metrics that seemed easy
to measure and had a chance of
being meaningful, and then write a
tool that let me browse through my
collection according to how well
they met the weighted collection of
metrics.

About face
Figure 2 shows a screen shot of

my program, About Face, in action.
The interface all happens in three
windows. I call the top window the
preview window, the lower left the
control panel, and the lower right the
font browser.

Let’s start with the control panel.
The gray section at the top lets us
pick characters to display in the font

browser, and the text and point size of the sample shown
in the preview window.

Below the gray section are six pairs of sliders. Each pair
lets you specify the value for a particular metric, and how
much that value should matter. For example, the top met-
ric is density, which can take on a value from 0 to 1. To
measure density, I typeset the character entered in the
measure box (in the top left of the control panel), find its
bounding box, and then compute the average density of
the character. White is 0, black is 1, and gray values are
intermediate. I add up the density of all the pixels and
divide by the total number of pixels in the bounding box
to get a measure for the density of that character.

You can move the level slider from 0 at the left to 1 at
the right, describing the density you’d like. Then you
adjust the weight slider, again from 0 at the left to 1 at
the right. This describes how much the density value
should factor into the system’s choice of font.

There’s a pair of sliders for each of the other four met-
rics, which I’ll describe later.

When you press the update button, the system goes
through all the fonts in the program’s directory, and
scores the measure character of each font with regard
to the metrics. The sorted results are shown in the font
browser window in the bottom right of Figure 2. The
best result is in the upper-left, and descending scores
run left to right, top down.

You can click on any font in the font browser window,
and the preview window will show you the preview text
using that typeface. The name of the window changes to
identify the face that’s currently displayed.

It’s fun to think about what constitutes good preview
text. Obviously if you’re setting something in particular,
like a company name, you’ll want to see that text. If
you’re going to use the typeface in a more general way,
you want to get a feeling for its general appearance. One
approach is to use a short fragment of text from the copy
you’re going to set. Another approach is to use a pan-
gram, which is a sentence that contains all the letters of
the alphabet. The best-known pangram is “The quick
brown fox jumps over a lazy dog.” Some people enjoy
constructing ever-shorter pangrams. Perhaps the short-

Andrew Glassner’s Notebook

88 January/February 2004

2 Screen shot
of About Face in
action. The
control panel is
in the lower
left, the font
browser is in
the lower right,
and the preview
window is on
top.

est one that reads like a real sentence, and doesn’t use
odd abbreviations, is “Sphinx of black quartz, judge my
vow.” I tend to change the preview text several times as
I’m considering a typeface, just to look at different com-
binations of letters and see how the text feels.

In Figure 3a I’ve set the desired density to 0, and
cranked the weight for density all the way up and set all
the other weights to zero. Thus the fonts are sorted so
that the lightest (or whitest) is first, with increasingly
darker faces following. In Figure 3b I moved the desired
density to 1, and the darkest letters bubble to the top. If
I want to sort on some other letter, I just enter it into the
measure box and press the Update button.

Metrics
Finding good metrics is the key to making this

approach work. I wanted metrics that I could easily com-
pute, and wouldn’t require any kind of shape analysis. I
thought about many of the standard morphographic
measures, but they didn’t seem like they’d be of much
value in finding fonts.

I eventually settled on a set of five measures. We’ve
already covered density, so let’s look at the others.

The aspect ratio is simply the value of dividing the
width of the character’s bounding box by its height. Figure
4 shows this value set to its minimum and maximum val-
ues, with the weights for the other metrics set to 0.

To compute the border metric I run through all

the pixels in the character’s bounding box and try to
determine which are on the character’s edge. I do this
by thresholding the bitmap of the character to 0 and 1
(I put the breakpoint at 0.5), and look for black pixels
that have at least one 8-connected white neighbor. The
number of such pixels, divided by the total number of
pixels in the bounding box, gives me an estimate for the
length of that character’s border. Figure 5 (next page)
shows this value set to its minimum and maximum val-
ues, with the weights for the other metrics set to 0.

The last two metrics ignore the letter in the measure
box and instead check two specific characters in the
typeface. The first is the EF match. My thinking is that
this tells me something about the regularity of a type-
face. Traditional typefaces, plus many others that have
a traditional feeling, tend to have a capital F that looks
a lot like their capital E. Figure 6a shows a few examples
of this. On the other hand, more irregular and free-form
typefaces, and those drawn by hand, will have a much
weaker match between these letters, as Figure 6b shows.
To measure the similarity between these two letters, I
typeset them, align their bounding boxes, and then
count the number of pixels that are different in the two
bitmaps. I divide this count by the number of pixels in
the bounding box, and subtract this ratio from 1, result-
ing in a value from 0 to 1 telling me how much the E and
F match one another.

We’ve all heard the phrase “mind your p’s and q’s,”

IEEE Computer Graphics and Applications 89

3 Looking at the effect of the density metric. The
weights for all other metrics are set to 0. (a) Density =
0. (b) Density = 1.

(a)

(b)

4 Looking at the effect of the aspect ratio metric. The
weights for all other metrics are set to 0. (a) Aspect
ratio = 0. (b) Aspect ratio = 3.

(a)

(b)

which urges us to pay attention to details. This phrase
started out as advice to typesetters, who set metal type in
frames to create words. These metal letters were shaped
backward so that the text would appear correctly when
the letters were inked and pressed against paper. Because
the lowercase letters p and q usually looked similar, it
was easy to confuse them. (The same thing applied to
the lowercase b and d, but I don’t remember any specif-
ic advice regarding those.) I felt this aphorism was a good
metric, like the EF-match metric, so that’s what the last
sliders control. I measure this just like the EF match, but
I mirror reverse the q before computing the measure.
Figure 7a shows some pq pairs that are good matches,
and Figure 7b shows some poor matches.

Figure 8 shows the program in action. I played with
the sliders for a bit, adjusting the values and the weights,
and I followed my instincts to find the kind of letter
forms I was after.

Efficiency
As I said earlier, I have thousands of typefaces on my

hard disk. If I had to measure all of these characteristics
each time I changed a value, the program would be too
slow to use.

Instead, I precompute all of these metrics for each
character in each typeface and save the results in a file
(the EF- and pq-match metrics are saved only once per
face, of course). When I enter a new character into the

measure box, I read through the file and pull into mem-
ory the values for that character from all the faces. Then
each time I move the sliders, it’s a simple matter to com-
pute the score.

To compute a score, let’s say that the value for slider
i is vi, and its weight is wi. In my current system, that
means density is v0, aspect ratio is v1, and so on. All of
the values, and all of the weights, are between 0 and 1
(the only exception is the value of the desired aspect
ratio, which ranges from 0 to 3). I score each font one
at a time. I start by looking up the metrics for the char-
acter in the measure box. Let’s call them p, so the den-
sity of that character is p0, its aspect ratio is p1, and so
on. The highest-scoring character will be the one whose
values exactly match the desired values on the sliders;
that is, each pi − vi = 0. Of course, most of the time these
values will be different, so we weight the absolute value
of the difference by the corresponding weight for that
metric, and then add everything up. In symbols, we
compute the score S by

I could normalize by the sum of the weights, but there’s no
need to since they’re the same for all the typefaces, and we
only care about the relative scores, not their actual values.

S w v pi i i

i

= −
=
∑ | |

0

5

Andrew Glassner’s Notebook

90 January/February 2004

5 Looking at the effect of the border metric. The
weights for all other metrics are set to 0. (a) Border = 0.
(b) Border = 1.

(a)

(b)

6 Looking at the effect of the EF-match metric. The
weights for all other metrics are set to 0. (a) The EF
match = 1 (this gives higher scores to fonts where the E
and F are as dissimilar as possible). (b) The EF match = 0.

(a)

(b)

I wrote this program in C# using Microsoft’s .NET
development environment. This made it easy to create
little bitmaps with typeset characters in them. I didn’t
have to learn how to read or parse the font files them-
selves, or figure out how to use them to render text.
Instead, I just gave the system the font, the text to be set,
a bitmap, and it did the rest.

Each time I press the Update button and create a new
sorted list of typefaces, I read them into memory one
by one, typeset the given character, scale it down if nec-
essary, and then copy it into the browser window. I do
this until the browser’s filled. Then any time I get a
mouse click in the browser, I find which box it’s in, look
up that typeface, and update the preview window
accordingly.

It can take a few seconds to measure all the metrics
for all the characters in a given font, including all of its
variant faces (for example, bold, italic, condensed, and
so on). Once that information is saved, it’s fast to read in
and use for updating. Working with several thousand
fonts, I can get new sorted lists almost instantly for data-
bases of a few hundred fonts.

Wrapping up
As I mentioned, the big trick here is figuring out the

right set of metrics that make it possible to search
through a huge number of fonts efficiently and pleas-

antly. I approached this system as a testbed: it’s pretty
easy to add new metrics, try them out, and toss them
overboard if they don’t measure up.

I probably went through a few dozen metrics before
settling on these. They seem pretty reliable at measur-
ing what they’re supposed to, and I find that often when
I’m searching for some kind of typeface, these let me get
something in the ball park. Unfortunately, with so many
fonts on my computer, the ball park is huge. I show the
top 36 candidates for each search in the browser win-
dow, but I often find myself wishing for more (I wanted
to make sure that the characters in the browser window
would be legible in this column, so I temporarily set the
browser window to show a 4 × 4 grid of fonts rather than
the 6 × 6 grid I use in practice).

I’d like to add a few things to this program. One is a
Next button—so that, for example, I can see the sec-
ond-best set of 36 candidates, or the third best, and so
on. I’d also like to add a More-like-this button, so I can
select a typeface and quickly get others that closely
match. This can be on the basis of just the selected char-
acter in the measure box, or an overall score for the
whole typeface.

On the whole, I’d say that the program is a qualified
success and a good start. I can sometimes find good type-
faces quickly, and I’m sometimes pleasantly surprised by
what I discover. On the other hand, when I have some-
thing specific in mind, I’ve found that these metrics some-
times don’t let me hone in on my preconceived ideas very
closely.

More work on the metrics, and the user interface
(which is admittedly crude and just for proof of concept)
would definitely pay off in a more pleasant and robust
tool for finding typefaces. �

Acknowledgments
Thanks to Matt Conway, Greg Hitchcock, and

Geraldine Wade for discussions and references while I
worked on this article.

Contact Andrew Glassner at andrew@glassner.com.

IEEE Computer Graphics and Applications 91

7 Looking at the effect of the pq match metric. The
weights for all other metrics are set to 0. (a) The pq
match = 1 (this gives higher scores to fonts where the p
and q are as dissimilar as possible). (b) The pq match = 0.

(a)

(b)

8 Snapshot of About Face in use.

