
Everybody loves making pictures with a Spirograph.
This wonderful toy was introduced in 1966 by Kenner

Products and is now manufactured and sold by Hasbro.
The basic idea is simplicity itself. The box contains

a collection of plastic gears of different sizes. Every
gear has several holes drilled into it, each big enough
to accommodate a pen tip. The box also contains some
rings that have gear teeth on both their inner and
outer edges. To make a picture, you select a gear and
set it snugly against one of the rings (either inside or
outside) so that the teeth are engaged. Put a pen into
one of the holes, and start going around and around.

The result is a pretty, swirly design, like the pictures
in Figure 1.

I got to thinking about this toy recently, and wondered
what might happen if we used other shapes for the
pieces, rather than circles. I wrote a program that pro-
duces Spirograph-like patterns using shapes built out of
Bezier curves. I’ll describe that later on, but let’s start by
looking at traditional Spirograph patterns.

Roulettes
Spirograph produces planar curves that are known as

roulettes. A roulette is defined by Lawrence this way: “If
a curve C1 rolls, without slipping,
along another fixed curve C2, any
fixed point P attached to C1 describes
a roulette” (see the “Further
Reading” sidebar for this and other
references). The word trochoid is a
synonym for roulette. From here on,
I’ll refer to C1 as the wheel and C2 as
the frame, even when the shapes
aren’t circular.

The simplest way to create a
roulette is probably to use a circle for
the wheel and a straight line for the
frame. This results in a figure that
has the special name cycloid. Where
we choose to put our pen tip results
in three different types of curves, as
we can see from Figure 2.

Spirograph only has a few curve
types available—as shown in
Figures 1 and 2a—where the pen is
inside the circle. To make other
types of curves, it might be useful to
attach a rigid arm to the center of
the disk. As the disk rotates, the arm
spins with it.

Determining whether the pen tip
is inside the rolling shape, right on
its edge, or outside of it, is a useful
tool for distinguishing among dif-
ferent roulette types. Figure 3 shows
the mathematical names for the dif-
ferent types of roulettes. The first
distinction is whether the wheel is

Andrew
Glassner

Around and around ________________________________

Andrew Glassner’s Notebook
http://www.glassner.com

98 March/April 2004 Published by the IEEE Computer Society 0272-1716/04/$20.00 © 2004 IEEE

1 Several
Spirograph-
style roulettes.

(a)

(b)

(c)

2 Three
cycloids. In this
figure, the
wheel radius
r = 1, and the
pen is at a
distance h from
the wheel’s
center.
(a) h = 0.5,
(b) h = 1.0, and
(c) h = 1.5.

inside or outside of the frame. If it’s
outside, we call it an epitrochoid;
otherwise it’s a hypotrochoid. If the
pen is right on the edge of the
wheel, then it’s an epicycloid or
hypocycloid. If the pen is not on the
edge, then the curve is an epiroulette
or hyporoulette. There are two
forms of each of these. If the pen is
inside the wheel, then we have a
cutate epiroulette or hyporoulette,
otherwise it’s a prolate epiroulette
or hyporoulette.

There are some special cases of
these curves that mathematicians
have studied over the years. I’ll
mention these briefly, without
going into detail. (You can learn
more about the background
behind these curves in the sidebar
“Some History.”) In each of these

IEEE Computer Graphics and Applications 99

h=r h>rh<r

Epitrochoids

Hypotrochoids

Cutate
epiroulette

Prolate
epiroulette

Epicycloid

Cutate
hyporoulette

Prolate
hyporoulette

Hypocycloid

3 Distinguishing among the roulettes. The upper row shows epitrochoids, because the wheel is
outside of the frame. The lower row shows hypotrochoids. The wheel has radius b and the pen is a
distance h from its center.

Further Reading
I found a bit of history on Spirograph at the

Kenner Toys Web site at http://www.kennertoys.
com/history.html.

There’s a ton of information on roulettes
available on the Web; just go to Google and type in
“roulette.” A great reference for all kinds of curves
is J. Dennis Lawrence’s paperback book, A Catalog
of Special Plane Curves (Dover Publications, 1972).

You can find lots of the mathematical details
behind epitrochoids at http://www.math.hmc.
edu/faculty/gu/curves_and_ surfaces/curves/
epicycloid.html and similar information for

hypotrochoids at http://www.math.hmc.edu/
faculty/gu/curves_and_surfaces/curves/
hypocycloid.html, as well as at http://mathworld.
wolfram.com/Epitrochoid.html.

Two nice galleries of pretty roulettes are
available at http://aleph0.clarku.edu/~djoyce/
roulettes/roulettes.html and http://www.xahlee.
org/SpecialPlaneCurves_dir/EpiHypocycloid_dir/
epiHypocycloid.html.

My information on Nasir al-Din as-Tusi in the
“Some History” sidebar came from http://
mathworld.wolfram.com/TusiCouple.html.

Some History
Although the Spirograph is a wonderful toy for

exploring roulettes, mathematicians started
studying them long before the 1960s.

In 200 BC, the astronomer Apollonius of Perga
described the motion of celestial objects with
combinations of circles. In 150 BC, Hipparchos of
Nicaea followed up on this idea and worked out the
apparent motions of the planets and the sun using
circles. Ptolemy popularized this model in 150 AD,
and his name became associated with the idea of a
solar system that had the Earth in the center, with
everything else spinning around the Earth in orbits
that were described by combinations of circles. As
these planets rotated around the Earth, and rotated
themselves, they traced out epicycloids.

In 1525, Albrecht Dürer wrote about
epicycloids, calling them “spider lines” in his book
Instruction in Measurement with Compass and
Straight Edge. Since then, epicycloids have been
studied by a host of famous mathematicians,

including Desargues, Huygens, Leibniz, Newton,
de L’Hôpital, Jakob Bernoulli, la Hire, Johann
Bernoulli, Daniel Bernoulli, and Euler.

Many roulettes have special names, given to
them by mathematicians who studied their
properties. Among the epitrochoids, R.A. Proctor
named the nephroid in 1878 in his book The
Geometry of Cycloids. The full name of the limaçon
is the Limaçon of Pascal (limaçon means “snail”).
The Pascal here is not the famous Blaise Pascal, but
his father, Etienne. De Castillon named the
cardioid in a 1741 paper.

Among the hypotrochoids, the ellipse was
probably first studied in 350 BC by Menaechmus,
and named in 200 BC by Apollonius. Euler studied
the deltoid (or tricuspid) in 1745. Roem first
studied the astroid (or tetracuspid) in 1674. The
name of the straight line called the Tusi couple
comes from the Persian astronomer and
mathematician Nasir al-Din al-Tusi, who studied
this shape in the late 13th century.

special cases, both the wheel and the frame are cir-
cles. I’ll call the frame circle Cf with radius rf, and the
wheel Cw with radius rw. The distance of the pen tip
from the center of Cw is h.

Figure 4 shows three special epitrochoids. A
limaçon is created when rf = rw. The cardioid is the
epicycloid case of the limaçon, created when h = rw

and rf = rw. The nephroid is another epicycloid, result-
ing from rf = 2rw.

Figure 5 shows five special hypotrochoids. You get an
ellipse when rf = 2rw. The other examples are all hypocy-
cloids, so h = rw. The Tusi couple is what you get when
drawing an ellipse with rf = 2rw: It’s a straight line. The
three-pointed star called the deltoid appears when
rf = 3rw, and the four-pointed star called the astroid is
created when rf = 4rw. You probably get the general idea
that you can make an n-pointed star with rf = nrw. Figure
5 also shows a 10-pointed star.

Figure 6b shows a special hypocycloid called a rose or
rosette, sometimes also called rhodonea. These are
hypocycloids where the center of the flower passes
through the center of the frame. You can generate rosettes
with different numbers of petals with this formula:

The flower in the figure uses n = 4, and a variety of val-
ues of h.

Now that we’ve looked at a bunch of particularly spe-
cial epitrochoids and hypotrochoids, let’s gather up the
families for some group portraits and see what they look
like together. Figure 7 shows the epitrochoids, and Figure
8 shows the hypotrochoids. We can use Spirograph to
make all the curves in Figure 7, and the upper-left quad-
rant of Figure 8. In the right side of Figure 8, we’d need
an extension arm to get the pen tip outside of the inner
gear, and on the bottom, the gear is too big for the inner
ring and would need to pass through it.

The geometry
I didn’t draw Figures 7 and 8 by hand. It turns out that

it’s easy to derive a simple formula for the two different
roulette types. Implementing these formulas is easy in

r
nh

n

r
n h

n

f

w

=
+

= −
+

2
1
1

1

()/

Andrew Glassner’s Notebook

100 March/April 2004

Ellipse Tusi couple
(a) (b)

Deltoid Astroid
(c) (d)

Double star
(e)

5 Special hypotrochoids. At the far left is (a) an ellipse (rf = 2rw). The other figures are all hypocycloids (so
h = rw). (b) A Tusi couple (rf = 2rw), (c) a deltoid (rf = 3rw), (d) an astroid (rf = 4rw), and (e) a 10-pointed star.

h=0.3 h=1 h=2 h=5
(a) (b) (c) (d)

6 Rosettes are hypocycloids (h = rw) generated by the formula given in the text. The four curves here are generat-
ed with n = 4, using different values of h. From left to right, (a) h = 0.3, (b) h = 1, (c) h = 2, and (d) h = 5.

Limaçon Cardioid Nephroid

4 Three special epitrochoids: (a) A
limaçon (rf = rw), (b) a cardioid (an
epicycloid with rf = rw), and (c) a
nephroid (an epicycloid with
rf = 2rw).

just about any modern program-
ming language.

The easiest way to set up the
geometry is in Figure 9 (next page).
For the illustrations, I’ll use a wheel
that’s smaller than the frame. I’ll
never make use of that condition in
the math, so the geometry works no
matter what the relative sizes are
between the wheel and frame.

We’ll put the larger circle (the
frame), with radius R, at the origin
(which I’m calling point A), and the
smaller circle (the wheel), with
radius r, on the x-axis to the right of
the origin, just touching the frame.
So the center of the wheel is
B = (R + r, 0). The point P repre-
senting the pen tip is at a distance h
to the right of B, so P = (R + r + h,
0). At the start, P0 = B0 + h.

The parameter t rotates the wheel
around the frame counterclockwise
by t radians. So for any given value
of t, the center of the wheel is at
Bt = (R + r)(cos(t), sin(t)). As the
wheel rolls around the frame, it too
rotates counterclockwise, as Figures
9b and 9c show. If we can find out
how much the wheel has rotated for
a given value of t, we can rotate P
about Bt by that amount, and we’ll
have our pen tip location Pt.

Let’s label everything as in Figure
9d. The angle we’ve rotated by is t,
shown at the center of both the
frame circle and the wheel. The
wheel has rotated by an angle v.
From the drawing, we can see
v = u + t, so now we need to find the
angle u.

The trick to finding u is to
remember that since the wheel isn’t
slipping as it rotates, the arc EF
around its perimeter has the same
length as the arc DE around the
perimeter of the frame. Writing
|EF| for the length of arc EF, we
know that |EF| = ur, and similarly,
|DE| = tR. So |DE| = |EF| means tR
= ur, which tells us u = t(R/r). Now
we can plug this back into our
expression for v = u + t = t +
[t(R/r)] = t[1 + (R/r)]. Let’s write
this as v = ct where c = (R + r)/r.

So now we can find Pt by taking Bt

and adding h(cos(ct), sin(ct)):

Pt = (R + r)(cos(t), sin(t)) + h(cos(ct), sin(ct))

where c = (R + r)/r.
The explicit parametric form of the epicycloid is thus

xe(t) = (R + r)cos(t) + h cos(ct)
ye(t) = (R + r)sin(t) + h sin(ct)

The hypocycloid follows the same reasoning. As
Figure 10 shows, we put the wheel inside the frame this

IEEE Computer Graphics and Applications 101

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

h

rw

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

7 Grid of epitrochoids. The horizontal axis shows different values of h, with a vertical axis rw.
Throughout, rf = 1.

h

rw

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

8 Grid of
hypotrochoids.
The horizontal
axis shows
different values
of h, with a
vertical axis rw.
Throughout,
rf = 1.

time. Figures 10b and 10c show that as the wheel rotates
it turns clockwise.

From the figure we see that |DE| = |EF|, or tR = vr,

giving us v = t(R/r). Observing that v = t + u, we iso-
late u = v − t = t(R/r) − t = t[(R/r) − 1], or u = dt, where
d = (R − r)/r. We want to rotate P not by u but by −u,

Andrew Glassner’s Notebook

102 March/April 2004

(a) (b)

(c) (d)

r

R

PBA

D

E

P‘

t
F

u v

10 Geometry
for the hypotro-
choids.
(a) The wheel in
its starting
position.
(b) The wheel
after a little bit
of rotation.
(c) The wheel
after more
rotation.
(d) The rotated
wheel’s
geometry.

t
D

E
F

P‘

u

v

r

h

R

PBA

(a) (b)

(c) (d)

9 The geome-
try for the
epitrochoids.
(a) The wheel in
its starting
position.
(b) The wheel
after a little bit
of rotation.
(c) The wheel
after more
rotation.
(d) The rotated
wheel’s
geometry.

because the wheel is turning clockwise. Write this out
as

Pt = (R − r)(cos(t), sin(t)) + h(cos(−dt), sin(−dt))
= (R − r)(cos(t), sin(t)) + h(cos(dt), −sin(dt))

where d = (R − r)/r, and we noted that cos(−x) = cos(x)
and sin(−x) = −sin(x) for any x.

The explicit parametric form of the hypocycloid is
thus

xh(t) = (R − r)cos(t) + h cos(dt)
yh(t) = (R − r)sin(t) − h sin(dt)

From circles to Beziers
To write a more general curve-based Spirograph pro-

gram, I decided to use Bezier curves. There are many
curve representations out there, but Beziers are very
simple to program, numerically stable, and easily con-
trollable. Maintaining smooth continuity across Bezier
segments is also easy. For a little project like this, they’re
just about perfect.

Figure 11 shows the basic idea using screen shots from
my system. I have two curves: the wheel (in red) and
the frame (in blue). I can toggle on and off the display
of control points for each curve independently. When

the knots are displayed, I can simply click in them and
drag them where I want.

Once I have the curves shaped the way I like them, I
assign what I call zero points. These are the initial points
of contact between the two curves. I have a slider in the
interface that lets me pick the zero point anywhere on
each curve, as Figure 12 shows. Once I’ve identified the
zero point on each curve, I snap them together. The
wheel moves to the frame so that the zero points are
coincident, and then it rotates so that its local tangent is
parallel to the frame’s tangent.

It’s important to specify whether the wheel is inside or
outside the frame. Figure 13 shows the same curves, but
starting inside and outside. Figure 13c shows the out-
side version after a few steps. You can start to see the
trail left behind by the pen tip. Figure 13d shows the
result after many more steps. Figure 14 shows the curve
resulting from this pair of shapes.

IEEE Computer Graphics and Applications 103

(a) (b) (c)

11 Creating shapes with Bezier curves. (a) The curves. (b) The Bezier
polygon for the wheel. (c) The Bezier polygon for the frame.

(a) (b) (c)

12 Setting the starting points. (a) Choosing a pair of zero points. The solid
dots show the curve’s center, the diamond on the curve is the zero point,
and the local tangent is also drawn. (b) A different pair of points. (c) The
wheel translated and rotated into position, shown in green.

(a) (b) (c) (d)

13 Starting off a drawing. The green version of the wheel is the moving copy. (a) Starting the wheel inside the
frame. (b) Starting the wheel outside the frame. (c) Figure 13b after a few steps; the wheel has rotated as it moved
around the frame. (d) After many more steps.

14 Curve
created by the
initial setup in
Figure 13b.

Programming
Figure 15 shows a picture of my system in action. The

control panel is on the left, and the design window is on
the right. I’ll discuss some of the programming ideas as
we walk through the controls.

At the top of the control panel is a cluster of controls
in a pale yellow box. These relate to the wheel. Using
the checkboxes, you can enable or disable the display of
the curve itself, its Bezier polygon, and the zero point.
The upper horizontal scrollbar lets you specify where
the zero point is: If the zero checkbox is on, then as you
move this scrollbar from the left to the right you see the
zero point make a full orbit around the wheel. The lower
scrollbar lets you rotate the curve into any orientation.

When you move the upper scrollbar to set the zero
point, the system asks the wheel for its arc length, s.
Then the value of the scrollbar is used to select a point
in the interval [0, s], and the zero point is moved there.
So the first job is to compute the arc length of the wheel.
I do this by summing up the arc lengths of each Bezier
segment. These I find by a simple numerical evaluation.
Bezier curves are parameterized by a single value that
sweeps along their length. So I simply take many tiny
steps and add up the length of each step.

Since my design window initially represents a unit
square, most of my curves have a length of around 2 or
3 units. A little experimenting with these curves showed
that 3,000 steps was way more than necessary to find
an accurate arc length, but it was quick to compute and
gave me lots of headroom for accurately computing the
lengths of larger curves, so I left it there. Thus the para-
meter u along each Bezier runs from 0 to 1 in steps of
1/3,000. I save the length of each Bezier curve along
with that segment. To find the arc length of the total
curve, I ask each segment for its length and simply sum
them up. I then save that total with the curve.

Any further requests for the curve’s length, or the
length of any Bezier segment, are easily served just by
returning the saved value. If at any time I add or delete
a Bezier segment, or move any of the control points, I
invalidate all of the arc lengths associated with that

curve, so the next request triggers a
recomputation. That new result is
saved again so further requests are
once again nice and quick.

Armed with these arc lengths, I
can find the point at arc length s by
basically going the other way
around. I step through the segments
of the curve until I find the one that
holds this value, and then I step
through that segment—again in
steps of 1/3,000—until I reach that
arc length, or have a couple of steps
that contain it. In the former case I
simply return that point, and in the
latter case I interpolate between the
two points.

I also compute the tangent vec-
tor at the point at arc length s by
finding the points at arc length s − δ
and s + δ, using a technique I’ll

describe later.
Each time I move the slider, I find the point corre-

sponding to the arc length at that value of the slider,
and save both the arc length and the position of the
point. If the zero checkbox is turned on, I draw a little
diamond at that point, and a short line to indicate the
tangent vector.

The pale blue box just beneath the wheel controls
holds an identical set for the frame. Beneath this is a
purple box that controls the resolution of the roulette
that’s generated by the wheel and frame. To see what
these numbers do, let’s look at how the roulette gets
generated.

To create the roulette, I march along the wheel’s
perimeter, rolling it along the frame. I find a point on
the wheel, move it to the frame, rotate the wheel so that
it’s tangent to the frame, compute the location of the
pen tip, and draw a little line to that point from the last
pen tip. Then I do it again. Let’s see this in more detail.

To start the process, I first find the arc length of the zero
point on the wheel. For reasons that will become clear,
let’s call this arc length cw. I can use this value to find the
corresponding point on the wheel, W(cw). Of course, at
the start of the process that’s just the wheel’s zero point.

I now want to find the tangent at this point. I find two
points that surround the current point: T0 = W(cw − t) and
T1 = W(cw + t). The value of t tells me how far ahead and
back to move along the curve. To match my arc length
computation above, I use an initial value of 1/3,000. This
gives me the vector Tw = T1 − T0, which is the local approx-
imation to the tangent. Just in case I’m at a part of the
curve where the parameter is changing slowly, I compute
the length of the vector Tw. If it’s smaller than some
threshold (I use 4/3,000), then I double the value of t and
compute T0 and T1 again. I repeat this until Tw becomes
large enough, or I’ve repeated it 10 times (in practice, one
or two loops is all that’s usually needed). I normalize the
vector Tw and save it with the wheel.

I then repeat the whole process for the frame. I find
the arc length cf for the zero point of the frame, and save
the point F(cf). I compute the tangent Tf and save it.

Andrew Glassner’s Notebook

104 March/April 2004

15 My Bezier
roulette pro-
gram in action.
The control
panel is on the
left, and the
graphical
design window
is on the right.

Now I move the wheel by the vector W(cw) − F(cf), so
that the two curves come into contact at their respec-
tive points (the letter c in the arc length values cw and cf

stands for contact). I compute the angles θw and θf cor-
responding to the tangent vectors for the two curves. I
then find the smallest rotation that I can apply to the
wheel’s most recent orientation so that the tangent vec-
tors are parallel. When we’re starting, the wheel’s cur-
rent orientation is whatever I set it to by using the
rotation scrollbar in the interface.

Now that I’ve got the wheel in the right position and
orientation, it’s time to locate the pen tip. Five numbers
represent the pen tip: the Bezier curve number b, the
first-knot number k, and three weights u, v, and w.
Figure 16 illustrates the idea. I imagine a triangle start-
ing from the center of the wheel (this is just the average
of all the vertices in the Bezier polygon) to one edge of
the Bezier polygon. The Bezier curve number b tells me
which Bezier curve to use, and the first-knot number k
tells me which knot forms one vertex of the triangle; the
next knot forms the next vertex. So if b = 2 and k = 1, as
in the figure, then I know the triangle is made up of the
wheel’s center (call that point C), and the second and
third control points in the third Bezier curve (call these
K0 and K1). I compute the center of this triangle, called
point T, by averaging these three points together. Using
these four points, I use the weights u, v, and w to com-
pute the pen tip P this way:

P = T + u(T − C) + v(T − K0) + w(T − K1)

I let the weights u, v, and w range from about −5 to 5,
which lets me move the point pretty far from the wheel
if I want. Figure 17 shows the triangle used for deter-
mining the pen tip during the drawing process.

Once I have the pen tip, I check to see if this is the first
point of the roulette. If it’s not, I draw a line from the last
pen tip location to the current one. Then I save this loca-
tion for use in the next line.

To generate the next point on the roulette, I need to
first move the wheel. I retrieve the contact arc length
cw, and bump it to get the new contact arc length:
c′w =cw+∆s (∆s is derived from one of the numbers you
can set from the interface). From this, I get a new point
on the wheel W(c′w), and of course a new tangent as
well. I do the same thing with the frame, getting a new
contact arc length c′f, a new contact point F(c′f), and a
new tangent.

It’s worth a moment to consider an important subtle-
ty: The increment along the two curves is the same
because we’re dealing with arc length, not the curve’s
intrinsic parameterization. Remember from our discus-
sions of the geometry using Figures 9 and 10 that because
the wheel doesn’t slip, the arc lengths along the wheel
and the frame at each step are the same. So it’s impor-
tant that the distance|F(c′f) − F(c′f)|=|W(c′w) − W(c′w)|.

Now that I have new contact points, I move the
wheel so that W(c′w) sits on top of F(c′f), and then rotate
it by the smallest angle that I can so that it’s tangent to
the frame. I locate the pen tip, draw a little line to there
from the last location, and then repeat the whole
process.

Returning to the purple box in the control panel, the
first number determines how many of these steps I
should take to make the roulette. If the roulette is closed
and matches up with itself, taking too many steps will
simply cause it to repeat on top of itself. But generally
with these oddball shapes the roulette doesn’t close up,
and so this becomes a matter of choosing an endpoint
based on aesthetic and time considerations.

The other number controls the precision of each step.
Recall that the arc lengths are bumped by ∆s. The num-
ber in the second purple box sets this in multiples of
1/1,000. So if the number is 5, then the arc length is
incremented by 5/1,000 on each step. As I mentioned,
I start with a drawing space in the unit square, so curves
tend to have lengths of around 2 or 3 units. A smaller
number in this box means that the steps are smaller,
resulting in more precision at a cost of slower drawing
time and a bigger output file.

The orange box contains three checkboxes. The first
toggles on and off the tangency constraint. Just for fun,
I thought I’d give myself the option of turning off the
rotation at each step that causes the wheel to become
tangent to the frame. If you turn off this box, the wheel
still moves around the frame, and the point of contact
still moves around the wheel, but the wheel doesn’t
rotate. The other two boxes simply turn on and off the
display of the transformed wheel as it moves, and the
trail it leaves behind. Turning these off during the cal-
culation, and then turning them on again when it’s over,
can save some time.

IEEE Computer Graphics and Applications 105

C

T

B0

B1

B3

B2

K1

K0
16 Geometry
for finding the
pen tip.

17 Showing
the pen tip
calculation in
action.

Andrew Glassner’s Notebook

106 March/April 2004

(a)

(b)
(c)

18 Generating
roulettes with
ellipses. (a) The
wheel is in
green, the
frame in red.
(b) A roulette
generated by
this pair.
(c) Another
roulette.

(a)

(b)

19 (a) The
wheel is now an
egg shape.
(b) The roulette
is quite differ-
ent from Figure
18.

(a)

(c) (e)(d)

(b)

20 (a) The frame is roughly circular, but the wheel is a thin, bent egg. (b) and (c) A variety of roulettes generated by moving the pen
tip, while the wheel rotates outside the frame. (d) and (e) The wheel is rotating inside the frame.

The next box down controls the pen tip’s location. The
two buttons select which triangle is being used as the
reference for the tip. Pressing the button with a minus
sign in it moves backward along the curve by one knot,
backing up to a previous curve if necessary. Similarly,
the button with a plus sign moves forward one knot. For
example, pressing the minus button would move the
pen tip in Figure 16 into the triangle defined by C, the
knot labeled K0, and the knot just below it. The three
scrollbars let you set the value of the three weights that
set the location of the pen tip.

The bottom set of buttons let me save and load files
that contain the curve coordinates and all the control
settings. I can also save the current wheel and frame and
the computed roulette to PostScript, which I used to save
the examples in the next section.

The buttons in the upper right are for debugging. The
big green button on the right starts the roulette compu-
tation. The button in the lower right causes the system
to pack up and quit.

Examples
Let’s look at some roulettes that I made with Bezier

curves for the wheel and frame. Figures 18 through 25

show a variety of roulettes generated by a bunch of dif-
ferent shapes (Figures 23 through 25 are on the next
page). I don’t show the location of the pen tip with the
shapes, because for many of the most interesting
roulettes the pen was far away from the wheel, which
would have meant leaving a lot of blank space on the
page. If you’re interested in reproducing these roulettes,
fooling around with the shapes and the pen tip is
enough fun to be worth the effort.

Because I calculate my roulettes by taking many
small steps, the PostScript files that I generate tend to
be huge. To prepare the figures for this column I
opened my roulettes in Adobe Illustrator and used its
built-in simplify command to reduce the number of
points in the curve. This had the effect of eliminating
some tiny jiggles in the curves that resulted from the
finite precision of my calculations. These mostly
occurred in places where both the wheel and the frame
were nearly flat, and the approximated tangent vector
wiggled by a very small angle from one contact point
to the next. �

Readers may contact Andrew Glassner at andrew@
glassner.com.

(a) (c)(b)

21 (a) The
same frame as
in Figure 20,
but the wheel
is more asym-
metrical.
(b) Rotating the
wheel inside the
frame.
(c) Rotating the
wheel outside
the frame.

(a) (c)(b)

22 (a) A
camel’s-hump
frame and a
blunt wheel.
(b) The wheel is
inside the
frame. (c) The
wheel is outside
the frame.

IEEE Computer Graphics and Applications 107

Andrew Glassner’s Notebook

108 March/April 2004

(a) (b)

23 (a) The same wheel as in Figure 22, but a softened
frame. (b) The roulette.

(a) (b)

24 (a) A bowtie-shaped wheel and a roundish frame.
(b) The roulette.

(a) (b)

25 (a) The
same roundish
frame as in
Figure 20, but
with a strange
wheel. (b) The
resulting
roulette.

S E T
I N D U S T R Y

S T A N D A R D S

computer.org/standards/

HELP SHAPE FUTURE TECHNOLOGIES • JOIN AN IEEE COMPUTER SOCIETY STANDARDS WORKING GROUP AT

IEEE Computer Society members work together to define standards like
IEEE 802, 1003, 1394, 1284, and many more.

802.11 FireWire
token rings

gigabit Ethernet
wireless networks

enhanced parallel ports

