
What’s the coolest display medium for computer
graphics that you’ve ever seen? There’s a medi-

um out there that people don’t often think about: a field
of living, growing crops. The medium is high resolution
and capable of displaying large images viewable from
dozens of yards or meters. That’s the good news. The
bad news is that it has limited color fidelity. In fact,
there are only two colors available, and you don’t even
get to pick them. Furthermore, making an image
requires either hours of exhaustive effort with a small
team, or the cooperation of friendly space aliens with
spaceships and other technology.

Not any field of crops will do: Thanks to how easy they
are to bend—and their willingness to stay bent—canola,
wheat, barley, and oats are your best choices for efficient
construction and crisp presentation. The general idea
is to create a two-color design by flattening down some
of the crop, as shown in Figure 1. The flattened parts will
have a different color than the parts that are left stand-
ing. Using some form of technology (simple, complex, or
extraterrestrial), you flatten the crops according to a
pattern, and you’ve created your output.

These types of patterns are often called crop circles
because the earliest examples were indeed simply cir-
cles, or small collections of circles. Today, crop art has
moved far beyond simple circles, as Figure 1 shows.
Sometimes crop designs are called pictograms or for-
mations.

The subject of crop circles is fascinating in two ways.

First, they pose interesting geometric challenges by the
limited number of tools that you can typically use when
creating such a design in the field, typically under the
cover of darkness in a single summer evening. Second,
the social phenomena surrounding these designs include
a rich mixture of people who create them, who study
them, and who vigorously debate a wide variety of con-
flicting theories regarding their creation and meaning.

In this column, I’ll look first at some of the interesting
geometry behind crop circles and related formations.
(To learn about the basic history of crop circles, see the
sidebar “Cerealogy: A Balanced Breakfast.”) Then, in
the next issue, I’ll talk about a language I’ve developed
to make it easier to design and construct crop circles.
Finally, I’ll discuss some of the practical aspects of mak-
ing crop circles, illustrated with my experience of actu-
ally making a formation.

Basic construction
Let’s suppose that we would like to make a crop-circle

design. If we’re to go about it in the traditional way, we
have a few constraints to obey.

The most important limitations are that we need to
make our construction under the cover of darkness, over
the course of a single evening. To avoid detection, we
can’t use flashlights, lasers, or any other large light-emit-
ting devices. We want to leave behind as little evidence
of our presence as possible, so that means not only no
trash, but no accidentally crushed stalks and no holes
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1 Two actual crop circles. Note that there are only two colors available in the design.
(Images copyrighted by Colin Andrews, http://www.CropCircleInfo.com, and used here with permission.)
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left over from posts and stakes pushed into the ground.
Traditionally, we go out with nothing but some survey-
or’s tape, string, a plan, and a stomper. A stomper is a
tool for flattening grain.

Like many elegant tools, the stomper is simple. It was
originally shown by Bower and Chorley in their famous
1991 demonstration. A typical stomper is shown in
Figure 2. It’s just a single board, usually about three feet
wide, with a six-foot length of rope knotted or tied near
the ends of the board. To flatten a chunk of crop, you
hold the rope handle in your hands, put your leading
foot on the stomper, and press down. Then you bring
your trailing foot up to just behind the stomper, and take
another step with your leading foot, flattening another
swatch of grain. And that’s all there is to it. Just stomp,
step, stomp, step, stomp, until your design is complete.

So how do you use a stomper to make a design?
Generally crop formations are made of straight lines,
circles, and arcs. A pattern usually begins when you
establish one or more construction marks to guide your
later stomping. For example, to make a circle you’d have
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Cerealogy: A Balanced Breakfast
There’s no way to know exactly when or where the crop-

circle phenomenon started. It certainly goes back to at least
15 August 1980, when the British paper the Wiltshire Times
published an account of three circular shapes in England’s
oat fields. Over the next few years, circles began to appear
in other English fields, and local papers would run stories
along with a photograph or two. Nobody really knew what
to make of them, although there was widespread
speculation that they were somehow associated with, or
even created by, space aliens. Groups of researchers started
to form, dedicated to studying each new formation as it
was discovered.

On 9 September 1991, the British tabloid Today
published an article titled “The Men Who Conned the
World.” In the article, two landscape artists named Doug
Bower and Dave Chorley announced that they had been
behind many of the crop circles that had been observed in
the previous decade. The next day the two men,
respectively 67 and 62 years old, demonstrated their
technique at a live press conference in Chilgrove in Sussex.
Using a couple of boards with ropes, they created a pair of
dumbbell-shaped formations for a group of reporters, who
filmed the entire demonstration.

Anyone who thought that this would put an end to the
theories that the circles were of extraterrestrial origin would
have been surprised. Although some accepted this
demonstration, many of the crop-circle groups rejected
both the claims and the demonstration as fakes. It’s an
interesting point of view: Two men who came forward as
the perpetrators of a hoax were declaimed themselves as
hoaxsters of a higher order, since their claims to have
created the hoax were seen as bogus.

Cerealogists 
This set the stage for what is now standard terminology

used by those who study crop circles, called cerealogists. In
cerealogist terminology, a genuine crop circle is one that

was created by space aliens, using any of a wide variety of
possible technologies, from radiation or controlled
whirlwind fields, to ball lightning, Q rays, and undetectable
manipulations of matter. On the other hand, formations
created by people are termed hoaxes, frauds, and fakes. The
people who make such formations call themselves
circlemakers, but cerealogists call them hoaxsters and frauds.

Cerealogists have developed a number of techniques to
determine for themselves whether a given crop formation
was made by humans, or left behind by aliens. These tests
include rubbing stalks of grain together and noticing which
cardinal direction they seem to move toward, using
dowsing rods on the area, and measuring for unusual levels
of phenomena ranging from bacterial activity to
radioactivity. Cerealogists also investigate the nature of the
bent and broken crops themselves, reasoning that certain
patterns of flattening, and specific types of damage to the
stalks, are impossible for humans to create. Formations that
demonstrate those patterns must therefore be genuine
(that is, of extraterrestrial origin).

Circlemakers
Self-described circlemakers are motivated by a wide

range of impulses. One of the most common of these is the
desire to create large and impermanent art. They share an
aesthetic with artists who build complicated sand castles at
the beach: The fun is in the process, and in the knowledge
that the art itself is fleeting and will soon disappear.

The sociology of crop circle creators, investigators, and
adherents of each theory is a fascinating symbiosis: The
investigators wouldn’t exist without the formations to look
into, the theorists couldn’t argue without measurements to
refer to, and it’s likely that many of the artists wouldn’t
bother to make the works if there wasn’t such an attentive
and appreciative audience out there to receive it. The fact
that most circlemakers work anonymously is probably
because of Doug’s and Dave’s legacy, which set the tone for
overnight, stealth construction.

2 A stomper for flattening crops.



a friend stand at the center of the circle, holding one end
of a piece of string. Facing your friend, you’d pull the
string taut and then step sideways, keeping the string
pulled tight. You’ll push down the stalks under your feet
as you walk, eventually creating a thin ring. You can
then use the stomper to flatten down the ring’s interior.

Depending on how you choose to flatten the crops
inside the circle, the lay of the flattened grain can form
concentric circles, a spiral, a woven thatch, or any other
pattern you like. Most designs are made out of simple
geometric elements. We use a few key points to guide
lines and arcs, and then we stomp down regions defined
by those lines and arcs.

We can describe a final formation like Figure 3a with
the schematic of Figure 3b. Once all of the construction
lines have been laid down, you just stomp down the inte-
riors of the regions that you want filled.

There’s an important caveat here, which affects this
technique in practice: there’s no eraser. You can’t remove
your construction lines after you’re done. This means
it’s important to create designs where all of the con-
struction lines are eventually incorporated into the
design itself. Any stray or leftover construction lines will
show up in the field. Of course, if you like them and feel
that they’re part of the pattern, that’s fine, but one tra-
ditional mark of a quality construction is that it has no
visible artifacts of its construction.

Suppose you want to make a trio of three equal circles
in a row, as in Figure 4a. How might you do this? Here’s
one way. You could create one of the circles just about
anywhere, as in Figure 4b. This will be the center circle,
marked B in the figure. Let’s say it has radius r. To make
circle A, one person stands in the center of B holding the
surveyor’s tape, and another person walks away, keeping
the tape taut, until he reaches a distance 2r. That’s the

center of circle A, as in Figure 4c. To find the center of
circle C, one person holds one end of the tape standing
in the middle of A, another person holds it loosely at the
center of B, and a third person pulls it taut to a distance
of 4r. That’s the center of C, as Figure 4d shows.

When the designs get more complicated, developing a
precise construction plan becomes critical to successful-
ly making the design without error, particularly given the
usual constraints of darkness, not enough time, and not
enough people. Finding key points for the centers and
ends of arcs and lines has to be efficient and accurate.

The limitations of working in the field create some
interesting limits on our designs. In the next section, I’ll
focus strictly on the pencil-and-paper stage of crop-cir-
cle design, when we’re still indoors, dry, and warm.
What makes the process interesting is that we need to
always keep in mind our limited capabilities when we’re
actually out in the field.

Hawkins’ five theorems
Let’s look at some of the design problems related to

the geometry of traditional crop formations.
Since photographs of crop circles first started appear-

ing in newspapers and magazines in 1980, people have
been assembling archives in their homes, books, or most
recently on the Web. Several of the sites in the “Further
Reading” sidebar offer huge galleries of gorgeous pho-
tographs of crop-circle formations.
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3 (a) Original
crop formation.
(b) Schematic
behind the
formation.
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4 (a) We’d like to make these three equal circles. Their
centers lie on a straight line. (b) We can make the
center circle anywhere. (c) To find the center of circle A,
simply pull a string of radius 2r from the center of B to
any point. (d) To find the center of circle C, hold one
end of a string of length 4r at the center of A. Have a
friend stand at the center of B to make sure it passes
through that point. The other end is the center of C.



One person who was fascinated by the geometric reg-
ularity of many crop circles was Gerald Hawkins.
Hawkins was a professor of physics and astronomy at
Boston University in Massachusetts, publishing a steady
stream of technical papers in research journals. In 1961,
he traveled with a group of students to Salisbury Plain
in England, the site of Stonehenge. Together, they mea-
sured every stone, rock, pit, and formation at the site.
Upon returning home, Hawkins used an IBM 704 com-
puter to help him analyze the data and look for patterns.

He concluded that Stonehenge was an observatory,
designed to predict eclipses, solstices, and other celes-
tial phenomena. He published his argument in a 1963
paper in Nature. The paper created a wave of public
interest and made him a famous popular figure. But the
paper created an almost immediate backlash of objec-
tions from archaeologists and astronomers, who reject-
ed both his methodology and his conclusions.

In the late 1980s, Hawkins found himself fascinated
by crop-circle formations. Working from published pho-
tos, he measured everything that seemed measurable
and then hunted through the data, looking for patterns.

After much measuring and searching, he started to
find some relationships. Abstracting the measurement
of some formations into their underlying geometry, he
found nice whole-number ratios between various mea-
sures. This excited him because these ratios (such as 2:1
and 4:3) are also the ratios between notes in a well-tem-
pered major musical scale. Feeling that he was onto
something, Hawkins organized his observations as five
theorems, which I’ll present in a bit.

Hawkins believed that at least some of the people who
were making new designs had knowledge of his theo-
rems, and were using them actively to design their for-
mations. The implication was that they must have
independently discovered his theorems, because other-
wise they would have been unable to produce those par-
ticular formations. As a prime example, he pointed to a
formation in Guildford, England (see Figure 5). The
strange thing is that Hawkins claimed that these for-
mations actually proved that the designers knew about
his theorems, and were using them actively.

Of course, the pattern in Figure 5 proves nothing.
Anyone can draw this simply by drawing an equilateral
triangle, and then setting the size of a compass by eye to
draw inscribed and circumscribed circles. If you chose to
actually compute the radii of those circles (as we’ll do
later), you could easily do it with standard first-year
trigonometry. The design of Figure 5 could indeed have
been made with Hawkins’ First Theorem, as he asserted,
but it could just as easily have been designed with a com-
puter-aided drafting program, a ruler and a compass, or
a beer mug, a coin, and the side of a square coaster.

In a 1992 Science News article, Hawkins described his
first four theorems, and alluded to a fifth. The article
said that Hawkins was “inviting anyone interested to
come up with the theorem itself before trying to prove
it.” We’ll discuss the fifth theorem later, but there’s
nowhere near enough information in the article to have
any idea what that fifth theorem could be. Asking peo-
ple to come up with the theorem is like an author chal-
lenging his audience to discover the plot of his next
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5 Schematic of
a formation in
Guildford,
England, which
Hawkins assert-
ed proved
knowledge of
his first 
theorem.

Further Reading
There are lots of books available on crop circles if you’d like to

investigate the subject further. I drew some of my historical
overview from Crop Circles, by W. Anderhub and H.P. Roth (Lark
Books, 2000). This book also contains a wealth of nice images.

For more practical matters, I used a small pamphlet, A Beginner’s
Guide to Crop Circle Making, by R. Irving, J. Lundberg, and R.
Dickinson (Circlemaker’s Press, 2004).

Gerald Hawkins’ connections to crop circles probably started in
the 1992 feature article “Off the Beat: Euclid’s Crop Circles” by I.
Peterson, Science News, vol. 141, Feb. 1992, pp. 76-77 (available
online at http://www.gaiaguys.net/Science_News_2.92.htm). A
slightly revised version appeared as “Theorems in Wheat Fields” by
I. Peterson, Science News, vol. 163, no. 26, 28 June 2003 (available
at http://www.sciencenews.org/articles/20030628/
mathtrek.asp).

Follow-up articles were “Geometry in English Wheat Fields”
(unattributed, possibly by H.B. Tunis), The Mathematics Teacher, vol.
88, no. 9, Dec. 1995, p. 802, and “From Euclid to Ptolemy in English
Crop Circles” by G.S. Hawkins, Bulletin of the American Astronomical
Society, vol. 23, no. 5, p. 1263, 1997. The unattributed ad-
vertisement I mentioned in the text is frequently referenced in crop
circle literature as a formal publication, but it’s clearly labeled as an
advertisement. It appears with the title “New Geometry in English
Crop Circles” in The Mathematics Teacher, vol. 91, no. 5, May 1998,
p. 441. Another follow-up article was “Crop Circles: Theorems in
Wheat Fields” by I. Peterson, Science News, 12 Oct. 1996 (available
online at http://www.gaiaguys.net/ffgeom.htm).

Dozens of Web sites are devoted to crop circles. Some good sites
to get a running start into the subject include (in alphabetical order)

� http://www.circlemakers.org,
� http://www.bltresearch.com,
� http://www.cropcircleconnector.com/anasazi/connect.html,
� http://www.invisiblecircle.org,
� http://www.fgk.org,
� http://www.kornkreise.ch,
� http://www.lovely.clara.net, and
� http://www.swirlednews.com.

Zef Damen has published many geometric reconstructions of
actual formations on his Web site. I learned a lot by studying his
presentations. Visit http://home.wanadoo.nl/zefdamen/en/
Crop_circles_en.htm for links to his reconstructions.



novel, and then summarize it; there’s just not enough
information available to get started on the problem. But
because he had phrased this as a challenge, it got peo-
ple’s attention.

Thanks to this air of mystery, the fifth theorem start-
ed to take on a life of its own among cerealogists, who
began to view it as a piece of secret information com-
municated to Hawkins by extraterrestrials. Hawkins
couldn’t publish the theorem, the story went, because
it was either too complex for people to understand, or
the information was too dangerous for humans to know
at our current stage of evolution. Hawkins was keeping
it a secret for the good of humankind, holding it back
until our species could show we were ready for it.

The fires of this story were fanned when The
Mathematics Teacher published a one-page article on
Hawkins’ theorems. The article was only six paragraphs
long, with an equal number of references, but it offered
a summary of his five theorems. Theorems one through
four are pretty straightforward. But as with the Science
News account, the article only said that theorem five was
a generalization of theorems 2, 3, and 4 without any
more details. It concluded by inviting readers to create
and prove Theorem 5 and send two copies of the proof
to the magazine. Again, there was little chance of that
happening given the information in the article. But
again, it appeared that a gauntlet had been laid down,
and the best mathematical minds on the planet had been
stumped.

The longer these two challenges remained unan-
swered, the larger the myth of Theorem 5 became. All
sorts of improbable ideas began to get associated with

the power of this unknown, but presumably vital, geo-
metric relationship. Perhaps, some speculated, it held
the clues for world peace, nuclear fusion, or even time
travel.

Fifth-theorem fever got another boost in 1996, when
Science News ran a follow-up article on Hawkins’
Theorems. This article contained a couple of figures that
were described as relating to the now-legendary
Theorem 5. But the mythology got cranked up another
notch, because the article presented a photograph of a
formation found in the field which led Hawkins to assert
the circlemakers were demonstrating knowledge of his
fifth theorem. The implication was that someone had
answered his challenge, and presented their proof to
him by creating the formation. Figure 6 shows this
design. Once again, this formation doesn’t prove any-
thing; it’s simply a nice pattern that could be produced
by anyone handy with a compass and ruler.

In 1998, a company identified as Boston University
Research took out a quarter-page advertisement in The
Mathematics Teacher. The advertisement, which didn’t
name an author (but which was presumably written by
Hawkins) reiterated the familiar challenge. The article
provided a schematic drawing labeled “V,” but again no
information actually tells what this fabled fifth theorem
might be.

Hawkins died at the age of 75 on 26 May 2003. As
far as I could tell after exhaustively searching online,
with extensive help from a University of Washington
research librarian, Hawkins never published his fifth
theorem. However, we found an old copy of an unat-
tributed homework handout on the Web (which has
since disappeared) that mentioned Hawkins’ fifth the-
orem in passing, with enough context to see what it
was all about. Once you know what it is, it seems that
Hawkins was playing a game with his audience, giv-
ing them just enough information to let their specu-
lation run unchecked, while withholding enough
information to make sure that nobody could answer
his challenge.

Now that we know the history behind Hawkins’ five
theorems, let’s actually look at them. Each time these
theorems appeared in print he described them in a dif-
ferent way, sometimes with typographical or other
errors. He also illustrated them with different figures,
some of which are utterly at odds with each other. For
such simple geometrical statements, this confusing
wealth of contradictory and incomplete detail is mad-
dening.

For the sake of clarity I’ll present them here in a sin-
gle consistent form. I also won’t try to prove them as rig-
orous theorems, since I think they fit much more in the
class of observations. I’ll provide proofs that are only as
rigorous as necessary to be convincing.

Hawkins’ Theorem 1
Theorem 1. Place three circles of equal radii at the

corners of an isosceles triangle, and choose their radius
r so that they share a common tangent. Draw a circle C
centered on one vertex of the triangle and passing
through the other two vertices:
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6 A formation
which Hawkins
asserted proved
knowledge of
his fifth theo-
rem (after an
image in “Crop
Circles:
Theorems in
Wheat Fields”).
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7 Setup for
Hawkins’ first
theorem. Three
circles of radius
r are centered
on the vertices
of an equilateral
triangle. Their
radius r is cho-
sen so that all
three circles
share a com-
mon horizontal
tangent.



a. The radius of the circumcircle of the isosceles tri-
angle is 4r/3.

b. The radius of circle C is 4r/√3.

Let’s start with the drawing in Figure 7. Each of the
three circles has radius r, they sit on the corners of an
equilateral triangle, and they share a common horizon-
tal tangent. The height of the triangle is thus 2r.

To prove part a, in Figure 8a I’ve extracted the right
side of the equilateral triangle, which is a 30-60-90
degree triangle with a long leg of length h = 2r; thus the
short leg of the triangle is h/√3, and the hypotenuse is
2h/√3. In Figure 8b I’ve drawn another 30-60-90 trian-
gle, finding that the distance from the triangle’s center
to one vertex is 2h/3 = 4r/3. That’s all there is to part a.

To prove part b, in Figure 8c I’ve drawn the required
circle. We know that its radius is the length of one side
of the triangle, which we know from the last step is
2h/√3 = 4r/√3, as claimed. That’s it for part b.

We can actually generalize the first theorem quite
nicely for any regular n-gon, not just triangles.

In Figure 9a I’ve drawn the situation for any regular
n-sided polygon. We simply put the three circles on the
vertices of the triangle as before, so that they share a
common tangent.

Figure 9b shows the measures for the relevant trian-
gles. The length of one side of the n-gon is 2r/cos α. We
know that the interior angle of a regular n-gon is (π(n −
2))/n, so because α is half of that, α = π(n − 2)/(2n).

The radius of the circle is then 2r/cos α. Plugging in
n = 3 gives us 4r/3, as expected. We can easily find the
radius of any other polygon with n sides. For a square
(n = 4), the radius is 2r/√2, and for a hexagon (n = 6)
the radius is 4r.

We can also compare the area of this circle to the area
of the circle circumscribing the polygon. The ratio of
these areas is

Plugging in n = 3 gives us 4r/√3. For a square (n = 4)
the ratio is 8, and for a hexagon (n = 6) the ratio is 16.

Hawkins’ Theorem 2
Before we get to Theorem 2, let’s find a useful rela-

tionship. Take any regular polygon of n sides, and draw
the smallest circle that encloses it (the circumcircle)
and the biggest circle that fits inside (the incircle), as
Figure 10 shows (next page). What’s the ratio of the
areas of these two circles?

Figure 11a shows the general idea. The circumscribed
circle is centered at the polygon’s center and passes
through all of its vertices. The inscribed circle is also cen-
tered at the polygon’s center, but it passes through the
edges’ midpoints.

Figure 11b shows the triangles formed by one side of
the n-gon and the center. Since the n-gon spans 2π radi-
ans and it has n sides, each side spans 2π/n radians. Half
of that, as shown in the figure, is π/n. This gives us the

π α
π α

( /cos )
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2 42

2 2

r

r
=
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(a) (b)

(c)

8 Geometry of Hawkins’
first theorem. (a) The 30-
60-90 degree triangle
formed on the right of the
equilateral triangle. (b) The
30-60-90 triangle in the
lower right of the equilat-
eral triangle. (c) A circle
drawn from the center of
one vertex of the triangle
through the other two
vertices has radius 4r/3.

(a)

(b)

(c)

R

2r/cos α
2r
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α

r

9 Generalizing Hawkins’ first theorem for a regular n-
gon. (a) Three points of the n-gon with three equal
circles that share a common horizontal tangent. (b)
That triangle for three different n-gons. (c) A circle
drawn from one vertex through the other two has
radius 2r/cos α.



triangle as shown, showing that the distance to the cen-
ter of the midpoint is r cos(π/n).

So the radius of the circumcircle is just r, and the
radius of the incircle is r cos(π/n). The ratio of their
areas is thus

Okay, we’re now set to dig into Theorem 2.

Theorem 2. The ratio of the area of the circumscribed
and inscribed circles of an equilateral triangle is 4.

This is easy enough, just plug n = 3 into our formula:

Hawkins’ Theorems 3 and 4
The next two theorems are simple:

Theorem 3. The ratio of the area of the circum-
scribed and inscribed circles of a square is 2.

Plug n = 4 into our formula:

Theorem 4. The ratio of the
area of the circumscribed and
inscribed circles of a regular hexa-
gon is 4/3.

You know the drill:

Hawkins’ Theorem 5
And now (drumroll, please), the

legendary fifth theorem!

Theorem 5. Given any triangle
inscribed in a circle of radius r, the
perpendicular distance from the cir-
cle’s center to any side of the triangle
is r|cos θ|, where θ is the angle
opposite the side.

You can see the geometry in Figure 12a. We have a
triangle UVW inscribed in a circle with center C and
radius r (the point W is chosen so that it does not lie on
the minor arc connecting U and V). I’ve placed point M
at the intersection of UV and the line that is perpendic-
ular to UV that passes through C (note that M is not
defined as the midpoint of edge UV). As instructed, I’ve
labeled the angle opposite side UV at point W with θ,
and I’ve marked the distance d = |CM|. The theorem
says d = r cos θ. Let’s prove it.

This is really easy if we remember the Inscribed Angle
Theorem from basic geometry. It says that in a circle,
any inscribed angle is half the corresponding central
angle. Figure 13 shows this for a circle with center O,
and three points A, B, and C, where C is not on the short-
est (or minor) arc between A and B. The central angle
formed by the arc AB is angle α = AOB, while the
inscribed angle is θ = ACB. No matter how we choose the
points, angle AOB will always be double that of ACB.

With this in our pocket, let’s add a few more pieces of
notation to Figure 12, giving us Figure 12b. I’ll mark the
angle UCM as φ. Since d = r cos φ, to prove the theorem
we need to find φ.

Now that we’ve got everything labeled, we can prove
this theorem just by looking at Figure 12. The Inscribed
Angle Theorem tells us that angle α = UCV is 2θ. From
symmetry, we see φ = α/2 = θ, so d = r cos θ, as claimed.
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10 Circum-
scribed (red)
and inscribed
(blue) circles in
a triangle,
pentagon, and
octagon.

(a) (b)

rπ
n

r cos(π/n)

11 (a) In a regular n-gon, the circumscribed circle passes through the ver-
tices, while the incircle passes through the midpoints of the edges. (b) The
distance from the center of the n-gon to the center of an edge is r cos(π/n).
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You’ll notice that the theorem
uses an absolute-value sign around
cos θ. You can see the reason for
that if you draw the triangle so that
θ > π/2; the absolute-value sign is
just a way to save us from having to
write the theorem in two cases.

Other useful geometry
The interesting Hawkins theo-

rems are the first and the last ones.
They can actually help us design
interesting structures to flatten with
our stompers.

Following in that spirit, I’d like to
offer a few more useful design rela-
tionships of my own.

Stellate
Suppose you have a regular n-gon

and you’d like to put points on each
side, as in Figure 14. The points are
found by extending neighboring
pairs of sides until they meet.

To find the point at the tip of
each star, look at Figure 15. Here
I’ve drawn a regular n-gon with 
n = 5 and radius R. The sides of the
n-gon have a length of 2s. From
the green triangle, we can simply
read off s = R sin(π/n). The third angle in the green
triangle is β, which is what’s left from the π radians
in every triangle after we remove the right and cen-
tral angles:

β=π − (π/2) − (π/n) 
= π((n − 2)/(2n))

Moving to the orange triangle, we can see that β +
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12 (a) The setup for Hawkins’ fifth
theorem. The points U and V sit on a
circle centered at C with radius r.
Point W is also on the circle, but not
on the minor arc between U and V.
The angle at W is θ. Point M is at the
intersection of UV and the line per-
pendicular to it that passes through
C. The distance d = |CM|. (b) The
central angle α = UCV. (c) The angle
α is twice the angle φ = UCM.
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13 Inscribed
Angle Theorem.
Angle θ = ACB is
half of α = AOB.

14 Stellation of a pentagon and a nonagon.
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15 Geometry for stellating a regular n-gon.



β + δ = π, so δ = π − (2β) = 2π/n.
From this, we can find the length
of the long side of the orange tri-
angle as

t = s tan(δ) = R sin(π/n) tan(2π/n)

Star circles
Now let’s put a circle into each

point of Figure 14, as Figure 16
shows. Our goal is to find the radius
of the little inscribed circle.

Figure 17 shows the geometry.
Let’s start with the green triangle.
We can see that β = π − (π/n) =
(π/2 − π/n). Moving to the pink tri-
angle, we can see that this also has
a right angle and an angle of π/n,
like the green triangle, so the far
angle (the one touching the center
of the circle) must also be β. We
can see that tan(π/n) = h/R, so h =
Rtan(π/n).

We’re almost there. In the blue tri-
angle, we see that α = (π/2) − β =
π/n. Thus

r = h sin α = R tan(π/n) sin(π/n)

Placing the circle only requires
moving a distance r along the line
from the center of the n-gon through
the midpoint of its edge.

Twist circles
Let’s come up with another pat-

tern from circles and regular n-gons.
Suppose we take an n-gon, copy it,
and give it a twist and a scale so that
the midpoints of the new version are
lined up with the vertices of the old
one. Figure 18 shows the idea. Then
we can put little circles into the
newly formed triangles. What’s their
radius?

Look at the orange triangle in
Figure 19a. As before, R is the dis-

tance from the center of the n-gon to any vertex, π/n is
the central angle of the marked polygon, and β is the
third angle of the triangle. In Figure 19b we can see that
a = R sin(π/n), and since two angles of the blue triangle
are π/n and a right angle, the third angle is also β.
Isolating this triangle in Figure 19c, we can double it up
in Figure 19d to represent the little triangle that’s creat-
ed by the twist and scale operations.

The circle touches the bottom of this triangle, and the
upper-right leg as shown. The line from the right vertex
to the center of the circle thus splits the angle π/n into
two equal pieces, creating the yellow triangle. From this
we can read

r = α tan(π/2n) = R sin(π/n) tan(π/2n)
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16 Star circles
for a pentagon
and a nonagon.
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17 Geometry for star circles.

18 Twist circles
for a pentagon
and a nonagon.
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19 Geometry
for twist circles.



Ellipses
Today’s crop formations are mostly composed of

straight lines and circular arcs. This makes good sense:
these shapes are easy to make with string and posts.

But there’s at least one other shape that’s almost as
easy to make, yet I’ve rarely seen any in the hundreds of
photos of crop circles that I looked at while working on
this project: the ellipse.

You might recall that you can draw an ellipse with two
pegs and a piece of string (now doesn’t that sound
appealing for crop circles?). Just put down the pegs, tie
the string to each one, pull it taut, put the pen at the tip
of the pulled string, and start to move it around the pegs,
as in Figure 20. By the time you get back to the starting
point, you’ll have an ellipse.

This is a nearly perfect crop-circle technique. The two
pegs, or foci, can be either posts in the ground or friends
holding ends of a piece of string. Facing them, and keep-
ing the line taut, you simply walk sideways until you’ve
made a complete circuit, creating the outline of the
ellipse as you go.

There are two popular ways to describe the shape of
a given ellipse. The form we’ve just seen, which I call the
circlemaker’s ellipse, can be written (P, Q, s), specifying
the locations of the pegs at points P and Q, and the
length of string s. The other form of the ellipse, which I’ll
call the geometer’s ellipse, is written (h, v, C, θ), where h
and v refer to the half-width and half-height of the
ellipse, C is the center point, and θ is the counterclock-
wise angle by which the ellipse is rotated. These para-
meters are shown in Figure 21.

How do we convert from one to the other? Here’s how
to go from the circlemaker’s parameters to the geome-
ter’s parameters:

1. Find θ = a tan 2( Qy − Py, Qx − Px).
2. Find C = (P + Q)/2.
3. Find w = |P − Q|/2. This is the distance |CP| = |CQ|.
4. Find h. The following steps don’t depend on ori-

entation, so for convenience I’ll use the ellipse
aligned with the axes in Figure 21b. If we draw the
string of length s taut along the +X axis, then it will
extend (h − Q) to the right of Q, and |CP| + h to the
right of P. Point Q = (w, 0) and P = (w, 0). So adding
these together, (h − w)+(h + 2) = 2h. Thus s = 2h,
or h = s/2.

5. In Figure 21c, when the string is taut at +Y, we have
two equal triangles. From either one, and using 
h = s/2, v=√h2−v 2.

6. Our ellipse is (h, v, C, θ).

In step 1, I used the function a tan 2, which is the stan-
dard math library function for computing the arctan-
gent of y/x in the correct quadrant (that is, making sure
the result has the right sign). To go the other way, we
use this procedure:

1. From the previous, s = 2h.
2. Also from above, w=√h2−v 2.
3. Compute vector M = w(cos(θ), sin(θ)).
4. P = C − M, Q = C + M.
5. Our ellipse is (P, Q, s).

Figure 22 shows a formation that I’d like to make
that’s based on a simple arrangement of ellipses.
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20 To draw an ellipse, put down two pegs and tie a
piece of string to them. Pull the string taut and move
your pen.

h

ww

P QC

v

v
s/2s/2

P Q

(a)

(b)

(c)

θ

21 (a) The
angle θ gives us
the rotation of
the ellipse. (b)
Geometry of an
ellipse. (c)
Geometry for
converting
between the
circlemaker’s
description and
the geometer’s
description.

22 Original
design based on
ellipses.



Another beautiful formation could be based on the
five mutually intersecting ellipses discovered by
Branko Grünbaum for representing a five-element
Venn diagram, as I discussed in my July 2003 column.
Figure 23 shows a potential crop formation based on
that pattern.

Reconstruction
Now that we’ve looked at some of the basic geomet-

ric tools behind crop circles, let’s think about designing
formations that we can actually build in the field.

As I discussed before, in the field you can’t erase your
construction marks. So if you cook up a design that
requires you to draw a bunch of lines and arcs to simply
locate a point to be used later, try to incorporate them
into your design.

Some other compass-and-ruler techniques are hard-
er to carry out in the field than on paper. For example,
we might have a diagram like Figure 24, where we have
a circle A and a point B, and we want to create a new cir-
cle B that’s centered at B but is tangent to the far side of
A. Using hand tools on a paper design we can easily
adjust our compass to the right radius by eye, and then
draw the new circle. However, this would be difficult to
do in the field, because when you’re out there in the
grain it can be hard to know just where to stand to find
that point of tangency. Also, as you walked around to
locate that point, you would certainly bend and snap
the grain as you wandered.

If you have a design that calls for this kind of step dur-
ing the paper construction, it’s important to work out
an efficient, alternative method with which to locate the
key points in the field. One nice aspect of working out
the design on paper first is that you can find quantita-

tive measures for all sorts of things, and then use those
measures in the field.

One of the best ways to learn how to do something is to
reverse-engineer high-quality examples that other peo-
ple have created. Zef Damen has created dozens of care-
ful ruler-and-compass style constructions based on actual
formations in the field. He starts with photographs, mea-
sures them, and then ultimately checks his reconstruc-
tion by overlaying it on the original photo (see the
“Further Reading” sidebar for a pointer to his site).

To get the flavor for how large formations get created,
let’s work through a reconstruction. I’ve chosen the Folly
Barn 2001 construction (see Figure 25a) because I think
it’s beautiful, elegant, and about the right level of com-
plexity for us here (crop circles are typically named for
the location and year in which they’re found). Of course,
we can find simpler formations on the crop circle sites,
as well as many that are far more complex. I’ll para-
phrase Damen’s analysis here, changing it a bit to make
it simpler and easier to follow. That will also make it eas-
ier to build the bridge to my description language, which
I’ll discuss next time.

Our goal is to build the schematic diagram of Figure
25b, which contains all the edges of the darkened
regions that we’ll flatten with our stompers.
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23 Ellipse-
based design
inspired by the
five-Venn ellipti-
cal diagram by
Branko
Grünbaum.
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B

24 We’re given
circle A with
center A and
radius Ar, and
asked to draw
circle B with
center B, and a
radius that
makes it tan-
gent to the far
edge of A. This
is easy on
paper, but hard
in the field.

(b)

(a)

(c)

25 (a) Folly
Barn 2001 for-
mation. (b)
Schematic of
the formation.
(c) The
schematic and
formation
overlaid.



1. We’ll start with a circle A of radius Ar, and circum-
scribe an equilateral triangle T around it, as in
Figure 26a. We can see from the triangles in Figure
26b and c that the distance from the center of the
circle to any vertex of the triangle is 2Ar, and the side
length of the triangle is 2Ar √3.

2. Draw circles B0, B1, and B2, each from one vertex
through the other two, as in Figure 27. Notice that
we’re starting out with a construction that mirrors
Hawkins’ Theorem 1. Since we know the length of
the triangle side from step 1, Br = 2Ar √3.

3. Locate point C0 at the top of circle A, as in Figure 28a
(next page). You can find this point by drawing a
line from the center of circle A to vertex V0 of trian-
gle T and noting where it crosses circle A. The coor-
dinates of this point are C0 = (0, Ar). We want to
draw a circle from point C0 that passes through each
of the other vertices of the triangle T. Consider the
vertex V0 in the bottom right. As we know from step
1, its coordinates are V0 =(Ar √3,−Ar). Therefore the
distance between these two points is

So our new circle C0 has center C0 and radius Ar √7,
as in Figure 28a. Now repeat this for the other two
vertices, by drawing a line from the center of A to
each vertex, locating where it crosses A, and draw-
ing a circle of radius Ar √7, as in Figure 28b. We have
Cr =Ar √7.

4. We’ll now draw three new circles D on the same cen-
ters as the circles B, but with a radius so that they’re
tangent to the circles C we drew in step 3, as in
Figure 29a.

To find the radius of these circles, which I’ll call D,
consider Figure 29b, where I’m showing circles B0

and C0 involved in constructing D0. Circle B0 is cen-
tered at vertex V0 = (0, 2 Ar). The point W that’s at
the bottom of the circle C0 is at W=Ar −C r = (0,
Ar √7). Thus the distance between them is

So our three circles D, shown in Figure 29d, are cen-
tered at the vertices of triangle T, and have a radius
Dr =Ar (1+√7).

5. Now we’ll draw a circle E from the center of the for-
mation with a radius that makes it tangent to the
circles we drew in step 4. Again, finding the radius
of this circle now will save time in the field. As we
can see from Figure 30, the radius is simply the dis-
tance from the center to vertex V0, which we know
is 2Ar, plus the radius of circle D0, which we know is
Dr =Ar (1+√7).

Thus Er = 2Ar +Dr =Ar (3+√7).
6. Time to draw three more circles! These circles, which

I’ll call F, will be centered on the same points as the
circles C, but will have a slightly smaller radius.

Figure 31a shows the idea. We want to find the
radius of a circle centered at point C0 that is tangent
to circle B0. Recall that B0 = (2Ar, 0). The point we
want to just touch is found by going up to the center
of B0, and then down by the radius Br, so Q = (0, 2Ar

− Br). The distance between them is
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26 Step 1 in the Folly Barn 2001
construction. (a) Draw circle A and
its circumscribed triangle T. (b)
Geometry of the lower-right corner
of the triangle. It has a radius of 2Ar.
(c) Geometry of the bottom of the
triangle; it has a side length of 2A√7.
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27 Step 2 in
the Folly Barn
2001 construc-
tion. (a) Circle
B0 is centered at
vertex V0 and
passes through
the other two
vertices. (b)
Circles B1 and
B2. (c) Diagram
after step 2 is
complete.



As shown in Figure 31c, we can simply move to the
centers of circles C and draw circles with radius Fr =
Br − Ar.

7. We’re just about done, but we need to account for
the little dot that’s at the center. Its diameter is equal
to the gap between circles from the last step, so its

radius is half that: Gr = (Cr − Fr)/2. Figure 32 shows
this final circle added in.

We’re finished! Our construction in Figure 32 match-
es the schematic in Figure 25. If we wanted to go out
and make this figure, we’d pick a value for Ar, and then
we could write down numerical lengths for every radius
involved.

In this process I followed Damen’s philosophy of
determining everything using strictly geometric infor-
mation. However, we could have taken a number of
shortcuts if we weren’t feeling so pure. For example, sev-
eral steps involved computing concentric circles of
slightly different radii, like circles C and F. We could
have simply said at the outset that the gap between these
two circles should be something like two feet. Then
when we’d found the larger circle in the field, we could
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28 Step 3 in the Folly Barn 2001 construction. (a) Circle C0 is centered at the point of intersection of circle A and the line from the
center of circle A to vertex V0. The circle’s radius is set so that it passes through the far two vertices. (b) Circles C1 and C2. (c) Diagram
after step 3 is complete.

W
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B0

D0
C0

29 Step 4 in the Folly Barn 2001 construction. (a) Circle D0 is centered at
V0, and has a radius so that it’s tangent to the bottom of C0. (b) Point W is
the point of common tangency of D0 and C0. (c) Circles D1 and D2. (d)
Diagram after step 4 is complete.

30 Step 5 in the Folly Barn 2001 construction. Circle E is
centered at the center of circle A, and is tangent to the
outer edge of circle D0.



just shorten up the tape by two feet and draw the next
one. It would also make our calculations easier on paper.

Notice that although I’ve been talking about marking
out complete circles, in this case you wouldn’t want to do
that. If you stepped through all of the circles we creat-
ed here in the field, you’d end up cutting extraneous cir-
cular arcs through areas that you’d prefer leaving as
solid pieces, as Figure 33 shows. While working in the
field, you need to keep in mind where you need to stop
marking your construction lines and err on the conser-
vative side. When the basic pieces of the design are in
place, you can return to incomplete arcs and finish them
off, since you’ll now know where to stop.

Next time
The geometrical process described above is interest-

ing, but it’s no way to produce an actual crop formation
in the field.

Next time I’ll discuss a small language I’ve designed,
called Crop, to help us describe crop formations effi-
ciently, and automatically produce instructions for mak-
ing them. I’ll also describe my experiences creating an
original crop circle. �

Readers may contact Andrew Glassner at andrew@
glassner.com.
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31 Step 6 in the Folly Barn 2001 construction. (a) Circle F0. (b) Circle F0 is
centered at C0, and has a radius that makes it tangent to the bottom of
circle B0 at the point Q. (d) Diagram after step 6 is complete.

32 Step 7 in the Folly Barn 2001 construction. Little
circle G is in the center.

33 If we lay down all the marks of Figure 32 in the
field, we’ll end up cutting through regions that should
be left untouched.




