
In the September/October 2004 issue, I presented Part
1 of my discussion of crop circles. We looked at their

history and some interesting geometry, and then recon-
structed a famous formation using classical ruler-and-
compass techniques.

This time I’ll present a much easier way to capture the
geometric structure of many crop circle formations,
using a special-purpose language.

Crop
Most crop circle formations have the same underly-

ing geometric ideas appearing over and over. Inspired
by this observation, I created a little language called
Crop for describing the geometry of these often-beauti-
ful designs.

Crop is compact and easy to read. It can also create
handy, explicit instructions for creating a design. We’ll
see an example of that in Part 3 of this column.

The design of Crop is simple and its goals are modest:
to represent crop circle formations efficiently. It’s defi-
nitely not a general-purpose programming language.

Crop uses a postfix syntax, which makes it easy to write
and parse. It’s the same style of language I used in my
January/February 2003 column to create Andrew’s
Weaving Language. The idea is that values are pushed
onto and popped off of a stack as the code is interpreted.

You can define variables within Crop, just as in any
other language. The collection of all the variables that
exist at any given time, along with their values, is called
the dictionary. Initially the dictionary starts off empty,
but there are a few special variables that get computed
for you on the fly when you need them, as I’ll discuss
below.

There are three distinct types of objects in Crop:
scalars (floating-point or integer numbers), points (rep-
resented by pairs of numbers), and objects (circles,
ellipses, and polygons). In the following discussion, I’ll
label variables starting with the letters s, p, or o to iden-
tify their type (I’ll also use i to refer to scalars that must
be integers).

Crop is written in plain text, using tokens separated by
white space. Any string of characters bounded by white
space that doesn’t have a predefined meaning is simply
pushed on the stack as that string of characters. Anywhere
a single space would do, you can insert as many spaces,
tabs, carriage returns, or other white space as you like to
improve legibility. The language is case-insensitive for all
commands, but it’s case sensitive for variable names.

Table 1 summarizes all of the commands in Crop. Let’s
look at some of them in batches.

Useful math
The first four commands add, subtract, multiply, and

divide pairs of scalars. They pop two scalars off the stack,
apply the operation, and push the result back on top:

s1 s2 +
s1 s2 −
s1 s2 ∗
s1 s2 /

Points are obviously important for describing forma-
tions. We create a point by naming two scalars and then
bundling them together with makePoint:

sx sy makePoint

This pops two scalars, representing the x and y coor-
dinates, and pushes back a single entity that represents
a 2D point. You can use the shortcut symbol # to repre-
sent the origin, located at point (0, 0).

We can also do math on points. We can add and sub-
tract points, and multiply or divide them by scalars:

p1 p2 p+
p1 p2 p−
s1 p1 p∗
s1 p1 p/

Note that the operators here are all prefixed with the
letter p, giving us for example p+ instead of simply +. If
you try to add two points with + rather than p+, you’ll get
an error. I think that for this language, there’s value to
explicitly distinguishing these operators.

We can find how far apart two points are by pushing
them onto the stack and then calling distance, which
pushes their distance back onto the stack:

p1 p2 distance

Names and geometric objects
We can name objects in Crop using the name com-

mand. This takes whatever object is on top of the stack
(a scalar, point, or object) and assigns it to the given
name:

Andrew
Glassner

Crop Art, Part 2 ____________________________________

Andrew Glassner’s Notebook

78 November/December 2004 Published by the IEEE Computer Society 0272-1716/04/$20.00 © 2004 IEEE

pso variable-name name

For example, 3.14 pi name creates a value for pi,
and p1 p2 p+ 2 p/ midpoint name sets the vari-
able midpoint to the point halfway between p1 and
p2. You can redefine a name any time by just assigning
a new value to it.

Okay, that finishes up the foundation. Let’s make
some geometry!

The four stars of our geometry world are line, cir-
cle, ellipse, and ngon. Each of these commands
uses a list as one of its arguments. A list is simply a
sequence of objects separated by white space and delim-
ited by angle brackets. The angle brackets are necessary
even if the list has only one element.

The line command joins up points that are specified
in a list:

< p0 p1 p2 ... pn > line

It draws a line from p0 to p1, then to p2, and so on, to
pn.

The circle command draws a series of circles that
share a common center, but have different radii:

pc < s0 s1 ... sn > circle

The point pc is the common center for all of the cir-
cles. Each scalar in the list causes a circle of that radius
to be drawn. The radii do not have to be in any specific
order, and they may repeat (which will simply cause the
same circle to be drawn more than once).

A close geometrical cousin to the circle, the ellipse
command takes two points pp and pq for the ellipses’
foci, and a list of scalars for the string lengths that can be
tied to the foci to produce the ellipse (see Part 1 of this
column for geometrical information on building an
ellipse in the field):

pp pq < s0 s1 ... sn > ellipse

An n-gon is a regular, convex polygon with n sides.
This means that each side has the same length, and the
sides meet at each vertex at the same angle. The ngon

IEEE Computer Graphics and Applications 79

Table 1. A summary of commands in the Crop language.

Command Usage Summary Action

+ s1 s2 + Add two scalars
− s1 s2 − Subtract two scalars
∗ s1 s2 ∗ Multiply two scalars
/ s1 s2 / Divide two scalars
makePoint s1 s2 makePoint p Create a point object
p+ p1 p2 p+ Add two points
p− p1 p2 p− Subtract two points
p∗ s1 p1 p∗ Multiply a point by a scalar
p/ s1 p1 p/ Divide a point by a scalar
distance p1 p2 distance s The distance between points
+ pso name name Name an object
line < p0 p1 p2 ... pn > line Draw lines connecting points
circle pc < s0 s1 ... sn > circle Draw concentric circles
ellipse pp pq < s0 s1 ... sn > ellipse Draw ellipses
ngon pc in angle < r0 r1 ... rn > ngon Draw ngons
makeLine p1 p2 makeLine Make a line object
makeCircle pc sr makeCircle Make a circle object
makeEllipse pp pq sr makeEllipse Make an ellipse object
makeNgon pc in sa sr makeNgon Make an ngon object
trope pa pb sa sb trope Find a point using a triangle-rope
pwalk o1 p1 sd pwalk Walk around an object’s perimeter
pspin o1 p1 sd pspin Rotate around an object’s center
ngonloop [commands] pc in sr sa ngonloop Repeat the loop commands for each vertex in an ngon
pop pop Pop and discard the top of the stack
dup dup Duplicate the item on top of the stack
printDict printDict Print the dictionary (for debugging)
printStack printStack Print the stack (for debugging)
// // comment Comment to end of line
A shortcut for the point (0, 0)
% % A shortcut for ngonloops to rotate 180/n degrees
V in V Coordinates of specified vertex in closest loop
V0 V0, V1, V−1, … Coordinates of vertices in closest loop
V0′ V0′, V1′, V−1′,V2′, … Vertices in enclosing loop(s)
LC LC The iteration count in closest loop
LC′ LC′, LC″, … The iteration count in enclosing loop(s)

command draws a set of n-gons with in points, centered
at point pc, and with radii drawn from a list. A radius is
defined to be the distance from the center of the n-gon
to any vertex. The n-gon is drawn by default with the
first vertex sitting on the positive x-axis. The sa para-
meter tells the system how many degrees to rotate the n-
gon clockwise:

pc in sa < r0 r1 ... rn > ngon

A useful shortcut exists for the sa field of an ngon
command (we’ll see its use in related commands in a
bit). If you use a percent sign for this angle, this will
rotate the polygon so that the vertices line up with
where the old side midpoints were. That is, if the poly-
gon has in sides, then % in the sa parameter is equivalent
to 180/in degrees. For example, in a square % means 45
degrees, and for a hexagon it means 30 degrees. I chose
the percent sign (two circles and a line) to remind us of
an edge and two vertices.

The commands we’ve just seen actually draw objects.
Sometimes it’s handy to create these objects so we can
use their geometry to make other objects, but not draw
them. The commands makeLine, makeCircle,
makeEllipse, and makeNgon do just that. These
commands are like their corresponding versions from
above, except that they don’t take lists for arguments,
since each command makes a single object. Typically
when you make an object with these commands you’ll
then assign it a name so it can be used later:

p1 p2 makeLine

pc sr makeCircle

pp pq sr makeEllipse

pc in sa sr makeNgon

Finding a point
Sometimes in the field you need to locate a certain

point, perhaps for the center of a circle or n-gon. Often
the best way to define that point is with respect to two
points you already know, and a distance from each of

those. In that case, you could find the missing point
using what I call a triangle rope.

Suppose that your unknown point C is a distance a
from point A and a distance b from point B. Since you
know where points A and B are located, you also know
the distance d between them. Take a rope of length a +
b + d and knot the ends together, making a loop. Use
tape and a bit of paper to mark the knot with a big letter
A. Now measure off a length d of rope in either direc-
tion from the knot, and mark it with a big B. Now con-
tinue from that point around the rope and measure off
a distance b. Put tape on the rope that marks it as point
C. If you want to check your work, make sure that the
amount of rope left over has length a. Figure 1a shows
the idea.

Now in the field, have one person stand at point A and
hold the rope at the knot, and have another person at
point B hold the rope at the tape marked B. A third per-
son holds the knot at the tape marked C pulls the rope
away from the other two people; when the rope is taut,
this person is at point C, as in Figure 1b. The person
pulling the rope can find two taut points, one on either
side of the line AB. You’ll want to make sure as you’re
walking around in the field that you’re standing on the
correct side of the line for the point you’re trying to
locate.

The Crop command that embodies this process is
trope. It takes as arguments the two points pa and pb
and the distances sa and sb that tell how far away the
unknown point is, respectively, from these two points:

pa pb sa sb trope

Figure 2 shows the geometry behind trope. The sys-
tem draws a circle of radius a around point A, and a cir-
cle of radius b around point B, and tries to intersect
them. The result could be that there are no points of
intersection, just one (if they happen to be tangent), or
two distinct points. If no points of intersection exist
between the two circles, the system reports an error, and
returns the origin point (0, 0). If there’s just one point,
the system returns that. Otherwise, it imagines a line
from A to B, and it returns the point that’s on the left side
of that line.

Finding the point of intersection of two circles is
straightforward. Figure 3 shows the geometry. We can
see from the figure that a 2 = p 2 + h 2 and b 2 + q 2 + h 2.
Rewriting these for h 2 we get h 2 = a 2 − p 2 and h 2 = b 2 −
q 2. Since these are both h 2, we have a 2 − p 2 = b 2 − q 2.
Because d = p + q, then q = d − p. Substituting this value
for q into the last expression and simplifying

a 2 − p 2= b 2 − q 2

= b 2 − (d − p)2

= b 2 − d 2 + 2dp − p 2

Removing p2 from both sides and solving for p , we find

We can now find the point Q as Q = A + (p/d)(B − A).

p
a b d

d
= − +2 2 2

2

Andrew Glassner’s Notebook

80 November/December 2004

A

A

B

A

B

a

a

b

b

d

d

C

C

B

(a)

(b)

1 Idea behind
the trope
command. (a) A
rope is marked
at points A, B,
and C, so that
the distances
between them
along the rope
are a = AC, b =
BC, and d = AB.
(b) When rope
points A and B
are on top of
ground points A
and B, and the
rope is pulled
taut, we have
found point C.

To find J, we first compute h − √a 2−p 2. Now make a vec-
tor S that’s perpendicular to AB, so S = (−(By – Ay),
Bx –Ax). Normalize S to unit length (call it Ŝ) and now
find J=Q+hŜ.

Another way to create a point is with the pwalk com-
mand. This command takes an object o1, a starting point
p1, and a distance sd, and “walks” the starting point
clockwise around the perimeter of that object. After it’s
covered the desired distance, the system pushes the
newly computed print onto the stack. Note that the dis-
tance measured isn’t the straight line between the start-
ing point and the ending point, but instead is the
distance as measured along the object’s perimeter.

o1 p1 sd pwalk

The pwalk command needs to start with a point
already on the object’s perimeter. If the input point p1
isn’t on the perimeter, pwalk finds the point on the
object’s perimeter that’s nearest to p1 and starts with
that instead.

A closely related command is pspin. This command

takes an object o1, a starting point p1, and an angle sd
by which to rotate that point clockwise around the
object’s center:

o1 p1 sd pspin

Loops
Many crop formations are built on a structure based

on one or more regular polygons. A common idiom is
that a similar construction is carried out at each vertex
of these polygons. This suggests the use of a loop that
repeats for each polygon vertex. I call this an ngonloop.

In many ways, this command is the heart of Crop:

[commands] pc in sr sa ngonloop

The arguments are the same as those in the ngon
command: they define a polygon with a center at pc,
made of in points, with a radius sr, rotated clockwise by
an angle sa. As before, sr is the distance from the center
to each vertex, and sa is an angle in degrees to rotate the
polygon clockwise. And the special character % used for
sa again means to rotate the polygon 180/in degrees.
The commands between the square brackets get exe-
cuted in times, once for each vertex in the polygon.

While the loop is executing, variables beginning with
the letter V take on a special meaning: they’re point
objects whose values are the polygon’s vertices. The sys-
tem takes the rest of the name of the variable and inter-
prets it as a number (if you use variables in the loop that
begin with V and then continue, but aren’t immediate-
ly followed by an integer, you’ll get an error). If you use
the variable V all by itself, then the system assumes that
there’s an integer on the top of the stack that should be
used as the value for the variable. For example, rather
than say V4 you could say 2 2 + V, which refers to the
same vertex.

The variable V0 has the value of the current vertex
(that is, it’s a point). The variable V1 is the next point
clockwise around the polygon, V2 is the one after that,
and so on. Variable V−1 is the point preceding the cur-
rent point (that is, counter-clockwise from V0), V−2 is
the one counter-clockwise from that one, and so on. The
indices are “wrapped around” the polygon, so negative

IEEE Computer Graphics and Applications 81

A B

A B

A B

(a)

(b)

(c)

2 (a) No intersections between circles. (b) One inter-
section between circles. (c) Two intersections between
circles. The system returns the point on the left side of
the line from A to B.

A BQ

J

h

d

a b

p q

3 The geometry of trope. Circle A has center A and
radius a. Circle B has center B and radius b. The distance
between them is d, and they meet at point J. The line
perpendicular to AB through J meets the line AB at Q.

numbers, or numbers greater than in, are taken modu-
lo in. Note that V−2 is a variable name, not an arithmetic
expression (both because Crop isn’t an infix language,
and because V−2 has no spaces).

For example, suppose we’ve created a polygon with
sa = 0, so the first vertex is on the x-axis. Then the first
time through the loop, the variable V0 refers to that ver-
tex, and V1 refers to the first vertex clockwise from the
X axis. The second time through the loop, V0 has the
value of the first vertex clockwise of the X axis, V1 has
the value that V2 used to have, and so on.

Another special variable is LC, which stands for
LoopCount. This is an integer that tells us how many
times the loop has been completed. The first time
through the loop, LC is zero. The next time it’s one, and
so on. For example, to refer to the vertex on the x-axis
at any point during the loop, you could use the idiom
LC −1 ∗ V. So the fourth time through the loop, LC
has the value 3, this little expression evaluates to −3,
and the variable is read as V−3.

You can nest loops if you want by putting one
ngonloop inside another. Each polygon loop can of
course have a different center, radius, angle, and num-
ber of vertices. A common idiom is to place the center
of an inner polygon on the vertices of an outer one.

The variables V0, V1, V−1, and so on, as well as LC,
refer to the innermost loop in which they appear. If you
want to refer to the vertices of the polygon in an outer
loop, append a prime to the variable name. Thus V1′
refers to the vertex after the current one in the polygon
one loop up, and V−3″ refers to the vertex three steps
before the current one in the polygon two loops up.
Similarly, LC′ refers to the loop count in the loop one
up, and LC″ goes two loops up.

For example, suppose we want to place a small pen-
tagon on each vertex of a big triangle, and draw a line
from each vertex of each pentagon to the vertex of the
triangle it’s centered upon. To make things more inter-
esting, let’s rotate each pentagon so that its first vertex
lies on the line from the triangle’s center to the penta-
gon’s center, as in Figure 4. We could write

[

[< V0 V0′ > line] V0 5 3 LC 120 ∗
ngonloop

] # 3 6 0 ngonloop

In the innermost loop, V0 refers to the current vertex
of the pentagon, and V0′ refers to the current vertex of
the triangle. The expression LC 120 ∗ rotates the pen-
tagon based on how many times we’ve gone through the
triangle loop.

Housekeeping
There are a few commands in Crop that are useful for

housekeeping and debugging. These commands take
no arguments:

■ pop pops the top element off the stack and discards
it;

■ dup pops the top element off the stack and pushes it
back on twice, effectively duplicating the top-of-stack
element;

■ printDict prints the complete current dictionary
to the output;

■ printStack prints the current stack to the output;
and

■ // commentmakes a comment line.

Anything after a pair of double slashes is considered a
comment until the end of the line.

This wraps up the Crop language as it stands today.
Crop is a completely phenomenological language,

Andrew Glassner’s Notebook

82 November/December 2004

4 Crop expres-
sion and its
result.

[V0 < 3.46 3.64 > circle] # 3 2 0

 ngonloop

[V0 < 2.46 2.64 > circle] # 3 1 0

 ngonloop

< 1 5.64 0.09 > circle

(a)

(b)

(c)

5 (a) Folly Barn 2001 formation. (b) Schematic of (a).
(c) Crop code for (a).

designed to match the formations
that I’ve looked at and tried to repli-
cate compactly. I’ve tried to keep it
as simple and small as possible,
while also remaining legible and
easy to understand. I encourage
readers to extend the language if
they think of other commands that
are simple and useful.

Strictly speaking, the language
I’ve described here should be
referred to as Crop 1.1. The first ver-
sion of Crop appears in my book
Morphs, Mallards, and Montages:
Computer-Aided Imagination (AK
Peters, 2004). Both versions work
perfectly well, but some of the com-
mands described here are a bit more
refined than those in the book,
resulting in a more consistent and
compact notation.

Crop examples
Let’s look at some examples of the

Crop language as applied to forma-
tions actually found in the field.
Figures 5 through 11 show some
images of actual crop formations,
and the Crop code that describes
them.

These examples are based on for-
mations that were actually observed
(and photographed), but for copy-
right purposes, I didn’t use pho-
tographs of those formations.
Instead, I used Adobe Photoshop to
create simulations of formations.
Since I could, and I thought it would
be fun, I used a variety of different
media in which to form the patterns.

These examples wrap up our dis-
cussion of the Crop language. Next
time I’ll talk about how I used this
system to actually create a forma-
tion in the real world. ■

Readers may contact Andrew Glass-
ner at andrew@glassner.com.

IEEE Computer Graphics and Applications 83

(a) (b)

(c) (d)

1.0 Ar name

1.08565 Br name

0.732051 Cr name

0.646402 Dr name

[V0 < Ar Br Cr Dr > circle] # 6 Ar 0

 ngonloop

< Ar Br > circle

(a) (b)

(c) (d)

1 Ar name

Ar 5 * 64 / Br name

Ar 30 * 64 / Cr name

Ar 64 / Dr name

< Ar > circle

[< V0 V5 > line] # 13 Ar 0

 ngonloop

[V0 < Br > circle] # 13 Ar %

 ngonloop

[V0 < Dr > circle] # 13 Cr %

 ngonloop

6 (a) Tegdown Hill 2003 formation. (b) Schematic of (a). (c) Crop code for (a). (d) Constructed
formation.

7 (a) Windmill Hill 2003 formation. (b) Schematic of (a). (c) Crop code for (a). (d) Constructed
formation.

Andrew Glassner’s Notebook

84 November/December 2004

(a) (b)

(d)

[V0 < 2.89 3.21 > circle] # 3 1 0

 ngonloop

[V0 < 3.89 4.21 > circle] # 3 3.6 0

 ngonloop

< 3.5 3.6 4.8 > circle

(c)

8 (a) West
Stowell 2003
formation.
(b) Schematic
of (a). (c) Crop
code for (a).
(d) Constructed
formation.

(a)

(b)

(d)

1 Ar name

0.866 Br name

0.555 Cr name

1.41421 Dr name

0.09754 Er name

141.37 Ar * angle1 name //

 (2*pi*360/16) * Ar

< Ar Br Cr > circle

< Ar > makeCircle C1 name

[

 V0 < Dr > circle

 V0 < Dr > makeCircle C2 name

 C1 V0 angle1 pspin J name

 J < Dr > circle

 V0 J Dr Dr trope K name

 C2 K Er pwalk L name

 L < Er > circle

] # 2 Ar 0 ngonloop

(c)

9 (a) Barbury
Castle 1999
formation.
(b) Schematic
of (a). (c) Crop
code for (a).
(d) Constructed
formation.

IEEE Computer Graphics and Applications 85

(a) (b)

(d)

1 Ar name

0.866 Br name

0.555 Cr name

1.41421 Dr name

0.09754 Er name

141.37 Ar * angle1 name //

 (2*pi*360/16) * Ar

< Ar Br Cr > circle

< Ar > makeCircle C1 name

[

 V0 < Dr > circle

 V0 < Dr > makeCircle C2 name

 C1 V0 angle1 pspin J name

 J < Dr > circle

 V0 J Dr Dr trope K name

 C2 K Er pwalk L name

 L < Er > circle

] # 2 Ar 0 ngonloop

(c)

10
(a) Sompting
2002 formation.
(b) Schematic
of (a). (c) Crop
code for (a).
(d) Constructed
formation.

1 Ar name

0.181332 Br name

0.818668 Cr name

1.06849 s name

< Br > circle

[

 V0 < Br > circle

 # V0 13 38 trope A name

 A < Ar Ar s * > circle

 # V0 48 73 trope B name

 B < Br Br s * > circle

 # V0 69 94 trope C name

 C < Cr Cr s * > circle

 # V0 31 56 trope D name

 D < Dr Dr s * > circle

] # 3 Cr 0 ngonloop

[

 V0 < Cr > circle

] # 3 Br 0 ngonloop

(c)

(a) (b)

(d)

11 (a) Ivinghoe
Beacon 2002
formation.
(b) Schematic
of (a). (c) Crop
code for (a).
(d) Constructed
formation.

