
This time we’ll look at the geometry of the classic law
of mirror reflection. As anyone who’s written a ray

tracer knows, this law tells us that the angle of incidence
equals the angle of reflection. It turns out that this 
little geometric truth can help solve another set of inter-
esting problems called billiard problems, which
describe the shortest path a billiard ball can take on a
polygonal table.

We’ll start by looking at two different derivations of
the law of reflection, one geometric and one analytic.
It’s always nice to see the same result come from two
very different approaches. Then we’ll look at the prob-
lem of finding the shortest circuit of a billiard ball
around a triangular table.

Before we get started, you might want to play around
with pencil and paper yourself and see if you can re-
derive the law of specular reflection. You need only two
laws of physics: In a vacuum, light will travel in a
straight line unless interfered with, and it always seeks
the shortest path.

The geometric approach
Figure 1 shows our basic setup. Light leaves a point P

towards a mirror, represented by the line M, and ulti-
mately arrives at point R. We want to find the point Q
on M where the light does the bouncing; from that infor-
mation we can deduce the law of reflection.

Ready to go? We know that three points determine
a plane, so putting P, Q, and R all in the plane of the
page seems reasonable. We’ll use our problem state-
ment from above to prevent paths directly from P to R,
though that might happen if P radiates light directly
along the line PR. Rather, we’ll simply direct our atten-

tion to the path of light that actually does bounce off of
M along the way.

There are a few subtleties we’ll deliberately ignore.
First, we’ll stick completely with geometric optics—no
wave effects such as diffraction will be considered.
Second, we’ll assume we’re in a vacuum, so the index of
refraction is a constant 1 everywhere. Finally, we’ll
assume that we haven’t heard of Einstein yet, so light
travels in perfectly straight lines all the time.

Now we’re ready to search high and low, putting our
point Q anywhere on M. The goal is to find the place-
ment of Q such that the time it takes the light to get from
P to Q to R is minimized. So we want to find Q such that
we minimize |PQ|+|QR|. In Figure 1, angles θi and θr

refer to the angles of incidence and reflection, and α i

and αr refer to their complements.
We’ll begin by creating point PM, which is simply P

reflected through M. Thus for all Q on M, |PMQ|=|PQ|,
and therefore |PQ|+|QR| = |PMQ|+|QR|. So if we
minimize the right-hand side of this equality, we also
minimize the left.

We know from Euclid that for any triangle with side
lengths (a, b, c), a + b ≥ c, achieving equality only when
a, b, and c are collinear and in that order. So in ∆RQPM,
we can say |PMQ|+|QR| ≥ |PMR|. As long as they’re not
collinear, the sum of the two steps from PM to Q to R will
be longer than the straight shot from PM to R. Since PM

and R are both fixed, the only way to adjust the path is
to move Q, and the shortest path is created when it’s
placed at Q*, that point on M that intersects the line PMR.

So we now have the intersection of two lines, M and
PMR, which meet at Q*. Thus α i = αr, and therefore 
θi = θr—and we’ve proved the law of specular reflection.

The algebraic approach
We begin the algebraic solution

with two definitions.
First, the optical path length

(OPL) is the time it takes a photon
to get from one point to another.
Since (in our simplified world)
we’re in a vacuum, the OPL is sim-
ply the distance multiplied by the
speed of light. For convenience,
we’ll ignore the speed of light, since
it’s just a constant scaling factor (or
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we could say we’re using a system of units where the
speed of light is defined to be 1).

Second, a stationary point in a 1D function is a point
where the function has a derivative of 0; that is, the 
tangent is parallel to the X axis. As shown in Figure 2,
that can be at a local maximum, a local minimum, or a
flat spot.

Among other things, Pierre de Fermat proposed that
a ray of light follows a path corresponding to a station-
ary value in its OPL. In other words, if we look at a pro-
posed candidate for the path taken by a ray of light, we
should find that any other candidate path nearby takes
the same amount of time or more. You might enjoy
thinking of a physical situation where several different
rays of light all take the same time to get from one point
to another.

Figure 3 shows the same geometry as in Figure 1, but
I’ve relabeled some of the distances to make the calcu-
lations easier. The OPL is simply the sum of the distances

To find the stationary points, we differentiate this
with respect to x and set the result to 0:

From Figure 3, we can see that

Making these substitutions, we find

0 = sin(θi) − sin(θr)

or, more simply, θI = θr, and we’ve come to the same
conclusion.

Now that we’ve pretty much settled the law of specu-
lar reflection, we can prove a little theorem about min-
imum inscribed polygons and billiard tables.

A trio of useful observations
Before we plunge into the land of billiard balls, three

observations will make life easier later on. If you’re geo-
metrically inclined, these are probably old hat to you.

First, note that any triangle inscribed in a semicircle
has a right angle. Figure 4 shows what I’m talking about,
using a triangle ∆ABC in a semicircle of radius r, or diam-
eter d = 2r. Points A and C are at opposite ends of the
diameter, and B is on the circle.

There are lots of ways to prove this. Let’s use an alge-
braic proof. Assume the circle is centered at (0, 0). Then
A = (–r, 0), C = (r, 0), and B = (x, y), where r2 = x2 + y2,
since B lies on the circle. Let’s find the distance AC by
assuming that angle ∠ ABC is a right angle. (For the rest
of this article, when there’s only one angle at a vertex,
I’ll write that vertex as an angle. So ∠ B here stands for
∠ ABC). If |AC|2 = |AB|2 + |BC|2, then Pythagoras is
satisfied and ∠ B is a right angle.

We can prove this just by writing everything out and
simplifying:

Taking the square root of both sides, |AC| = 2r, and
therefore ∠ B is a right angle.

When several points lie on a circle, such as A, B, and
C in this example, we call them concyclic.

Second, we’ll need an observation that comes up
when we reflect a point two times. If we reflect a point
once, such as when we reflected P to PM through the line
M in Figure 1, we can say that PM (the image of P as a
result of reflecting through M) could have been created
by simply translating P by the vector PM – P. What hap-
pens if we create PLM by reflecting P a second time
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2 The black dots mark stationary points—locations
where the function has a zero derivative.
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.

through a different line, say L, that is not parallel to M?
Figure 5 shows the result. If the angle from L to M is

α, then PLM can be created either by translation of P
(which isn’t too interesting) or by rotation of P through
an angle 2α, using the intersection point of L and M
(labeled O) as the center of rotation.

There are lots of nice proofs of this, which is only one
of the many pretty results that come from looking at
isometries in the plane. However, Figure 5 speaks elo-
quently for itself. Since there are two pairs of similar right
triangles, and the sum of the angles of one of each at O is
α, the sum of all four must be 2α. If you like, you can con-
sider cases where L and M are parallel, or where P starts
inside their acute angle, or where PM appears on the other
side of M, and so on. You’ll find that when L and M are
parallel, the point P is translated along a vector perpen-
dicular to them; when L and M intersect, the result is
always a rotation of 2α around their intersection point.

Third, we will want to know that
all inscribed angles that contain a
common chord are equal. An
inscribed angle is just a pair of lines
that intersect at a point on a circle
and contain a chord on that circle,
as in Figure 6a. By comparison, a
central angle is created by a pair of
radii that contain a chord. We want
to show that in this figure, if we keep
the A and B fixed, the inscribed
angle ∠ AJB is the same no matter
where on the circle we place J (as
long as it’s outside the arc AB).

Let’s really nail this one down.
The approach we’ll take is to prove
that an inscribed angle is always half
as large as the central angle that
inscribes the same arc (or chord).
Since there’s only one central angle
for any arc, this means that all the
inscribed angles that contain that
arc have the same size. The special
case comes when the chord is a
diameter, and that’s exactly the case
we just handled above.

To be very careful, we have to con-
sider all the places J can go. This
turns out to demand three cases,
based on where the circle’s center C
falls with respect to the triangle
∆JAB.

In Case 1, illustrated in Figure 
6b, C falls on the line JA. Since CJ
and CB are radii, ∆BCJ is isosceles,
and ∠ CJB = ∠ JBC. Since ACJ is a
diameter of the circle, ∠ ACB = 
π– ∠ BCJ. From ∆BCJ, we find that 
π– ∠ BCJ = ∠ CJB + ∠ JBC. Putting
these together, ∠ ACB = ∠ CJB +
∠ JBC = 2∠ CJB = 2∠ AJB, just as we
hoped. In words, the central angle
∠ ACB is twice the measure of the
inscribed angle ∠ AJB.

How about when J is located somewhere else? In
Case 2, illustrated in Figure 6c, J is not on line CA but is
inside the triangle ∆AJB. We’ll use Case 1 to figure
things out, so we include the diameter from J through
C; its other intersection with the circle is at K. The diam-
eter JK cuts everything into two halves, each of which
looks like Case 1. On the A side, we find from Case 1
that ∠ ACK = 2∠ AJK. On the B side, ∠ KCB = 2∠ KJB.
Now the central angle ∠ ACB = ∠ ACK + ∠ KCB =
2(∠ AJK + ∠ KJB) = 2∠ AJB. So again we’ve found that
∠ ACB = 2∠ AJB.

Finally, Case 3 is illustrated in Figure 6d, where J is
not on line CA and is not in the triangle ∆AJB. As before,
we’ll draw the diameter from J through C, creating 
point K. We can see that ∠ ACB = ∠ KCB – ∠ KCA. 
These two right-hand-side angles are easily found 
from Case 1. ∠ KCB = 2∠ KJB (where the enclosed 
arc is BK), and ∠ KCA = 2∠ KJA. Subtracting these,
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∠ ACB = 2(∠ KJB – ∠ KJA) = 2∠ AJB.
That wraps up the proof. No matter where we put the

vertex of an inscribed angle, it always has the same size,
which is twice that of the corresponding central angle.

Playing billiards
When you bounce a billiard ball off a bumper, you

expect the same sort of result as the ray of light we stud-
ied above—the reflection should be a perfect mirror
reflection.

Let’s ask the following question: What is the shortest
path a billiard ball can take such that it bounces off each
table wall and returns to its starting point traveling in
the same direction from which it started? If you’re will-
ing to discount friction, we could say that we want the
ball to come back with the same position and velocity
as when it started, so that it could repeat the same cir-
cuit over and over. For simplicity, we’ll use an acute tri-
angular table in this discussion. At the end I’ll mention
what happens when we generalize our results to tables
with more sides or obtuse angles.

Our answer comes from studying the reflections of
the ball as it bounces around. H. Schwarz (1843-1921)
developed the technique of the proof; we’ll follow Dan
Pedoe’s presentation in Geometry (Dover, 1988).

Let’s begin with ∆ABC as shown in Figure 7. Since we
want one complete cycle, we’ll say that the ball follows
the inscribed triangle ∆PQR. The point P lies strictly
within edge BC—that is, it is on the line between those
points and not right on top of either vertex. Similarly, Q
is inscribed in edge AB and R in edge AC. Just where
should these points lie?

To get started, let’s assume that we’ve already found
the ideal locations for P and Q. We might expect that the
shortest path from P to Q via line AC would come from
reasoning similar to that we used to find the shortest
path of light. This would come from placing R so that it
forms a perfect mirror reflection from P to Q. We would
expect the same property from P and Q as well.

That’s a nice intuitive start, but hardly a proof. If we’re
willing to commit to this line of reasoning, we have to
answer two questions:

1. Can we construct a triangle that creates a perfect
specular reflection at each edge?

2. Is this the shortest path that forms a repeating
circuit?

We’ll take these two questions—existence and opti-
mality—in turn. First, we’ll analyze the construction of
∆PQR to see if we can in fact make the beast. If we can,
we’ll have created what is called a light polygon (in this
case, a light triangle), because of its close relation to the
reflection of light.

Questions of existence
If you’d like, you can take a break here and try to

devise a construction scheme for making a light trian-
gle ∆PQR. I’ll cut to the chase and propose a method,
and then show that it works.

The proposed technique is pretty simple: P, Q, and R
are the feet of the altitudes of ∆ABC. Recall that the alti-

tudes are the perpendiculars of each edge that pass
through the opposite vertex, as shown in Figure 8. The
three altitudes meet at point H, called the orthocenter.

Our goal is to show that these points form a light tri-
angle with respect to the outer triangle ∆ABC. This
means that each pair of edges supports the mirror-
reflection law. In Figure 9, I’ve indicated this with col-
ored dots—each pair of angles that shares a similarly
colored dot should be the same size. Look at point R,
where θi = ∠ QRH and θr = ∠ HRP. So showing θi = θr

requires showing ∠ QRH = ∠ HRP.
No problem. We’ll do this in three steps, as shown in
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Figure 10. First, we’ll show that ∠ QRH = ∠ QAH (the red
wedges), then ∠ QAH = ∠ HBP (the green bands), and
then ∠ HBP = ∠ HRP (the lavender wedges). Putting
these together, ∠ QRH = ∠ QAH = ∠ HBP = ∠ HRP,
which will conclude the proof.

For the first step, we note that Q, H, R, and A are con-
cyclic—they all lie on a circle, as shown in Figure 11.
Think of AH as the diameter of a circle; since ∠ AQH is a
right angle, we know that Q lies on that circle. Similarly,
R lies on the same circle, since it has the same diameter
and ∠ ARH is also a right angle. Note that ∠ QRH forms
an inscribed angle enclosing the chord QH, and ∠ QAH
does the same. As we saw above, this means the angles
are equal: ∠ QRH = ∠ QAH.

Figure 12 shows the second step, involving ∆ACP and
∆BQC. In ∆ACP, since ∠ P is a right angle, ∠ CAP = ∠ QAH
is equal to (π/2) − ∠ C. In ∆BQC, ∠ Q is a right angle, so
∠ QBC = ∠ HBP is equal to (π/2) − ∠ C; that is, ∠ QBP is
also the complement of ∠ C. Thus ∠ QAH = ∠ HBP.

In step three, we’ll play the same game as in step 1.
Note from Figure 13 that points P, H, R, and B are con-
cyclic, since they share the common diameter BH, and
∠ BRH = ∠ HPB = (π/2). And as before, note that 
∠ HRP = ∠ HBP, since they both contain the common
chord HP. Therefore ∠ HBP = ∠ HRP.

That’s it! As promised, this chain of reasoning has led
to ∠ QRH = ∠ HRP, which was our goal.

We have shown that if a billiard ball leaves Q and

strikes R as we’ve constructed it, and then bounces just
like light bounces off a mirror, the ball will travel to P.
Since there was nothing special about our choice of R,
the same reasoning holds for the other two points.
Figure 14 shows the complete set of relationships.

Thus ∆PQR is a light triangle for ∆ABC—we have
proven that such a triangle indeed exists.

Proving that it’s the fastest route for the ball is anoth-
er matter, but reflection will be our ally again in that
proof.

Smaller is better
Now we want to show that ∆PQR is the smallest (or

fastest) light triangle. Writing p(∆PQR) to denote 
the perimeter of a triangle, we want to show that 
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p(∆PQR) ≤ p(∆UVW) for any other light triangle ∆UVW.
In fact, we can prove something even stronger: ∆PQR
has the smallest perimeter of any triangle inscribed in
∆ABC, whether it’s a light triangle or not. This is actu-
ally even a little easier to prove, since we don’t have to
prove that our contender ∆UVW is a light triangle.

Let’s begin with our original triangle ∆ABC and our
light triangle ∆PQR, as shown in Figure 15. Here we’ve
also drawn some other triangle ∆UVW. We won’t say
anything specific about ∆UVW except that it’s inscribed
in ∆ABC. We’ll now see that the perimeter of ∆UVW will
always be larger than the perimeter of ∆PQR, unless
they’re the same triangle.

First, we’ll reflect ∆ABC through side AC, as in Figure
16. Superscripts refer to the images of points after reflec-
tion. So A and C stay fixed, but B flips to B1. Note that P,
Q, and R1 are collinear, as are R, Q, and P1, because of
equal angles at AC. In general, U, V, and W1 will not be
collinear, nor will W, V, or U1.

Now we’ll reflect the new triangle ∆AB1C through
edge B1C, creating ∆AB1C2. Continuing, we’ll reflect
through B1C2, then C2A3, and finally through A3B4, giv-
ing us the chain shown in Figure 17.

We’ll stop here after five reflections, because now
edge B4C5 is parallel to its original position BC. To see
this, consider that on the first reflection, edge BC is rotat-
ed around point C by a clockwise angle 2∠ C. On the sec-
ond reflection, it’s rotated around point B1 by the same
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14 The light triangle and its relationship to the trian-
gle in which it’s inscribed. All angles with the same
color are equal.
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amount. The third reflection is in B1C2 itself, so that edge
stays fixed. Then that edge gets rotated by −2∠ C around
C2 (that is, it’s rotated counterclockwise), and then
again by another −2∠ C around B4. Adding these up, we
find ∠ C(2 + 2 + 0 −2 −2) = 0, so the total angle of rota-
tion is 0 and B4C5 is again parallel to BC.

Consider the polyline P,Q,R1,P2,Q3,R4,P5, which we
will denote as simply (P, P5). This is equivalent to two
copies of ∆PQR unfolded and straightened out. Each
edge in ∆PQR is accounted for twice, so the length of
this polyline is |(P, P5)| = 2p(∆PQR). Note that this
polyline is in fact a straight line because of construction.

Now consider the polyline created by our potentially
shorter triangle ∆UVW. This polyline is given by
U,V,W1,U2,V3,W4,U5. Again we find that we have 
the three sides of ∆UVW, each counted twice, so 
|(U, U5)| = 2p(∆UVW). Since BC and B4C5 are in the
same orientation, U5 is in the same relative position to
P5 as U is to P, so the straight line from U to U5 is paral-
lel to the straight line from P to P5. Now we can ask if
it’s possible that p(∆UVW) < p(∆PQR). Visually, the
answer is clear from Figure 17: There’s no path from U
to U5 shorter than the straight line from P to P5. Writing
|P, P5| for the length of the straight line from P to P5,
and similarly for |U, U5|, we summarize this as

So the perimeter of ∆UVW will always be greater than
that of ∆PQR, except when they’re the same triangle
(and then of course they have the same lengths).

We can see from Figure 17 that ∆PQR is the only tri-
angle that can be reflected five times and have its pieces
lie on a straight line from P to P5. Any other triangle will
necessarily have kinks in the path, and this will make it
longer.

Thus we have proven that ∆PQR is a light triangle and
that this light triangle has the smallest perimeter of any
inscribed triangle.

More of everything
The next step is to think about generalizing this

approach to polygons with obtuse angles, or more than
three sides. It turns out things get rather more compli-
cated. I’ll summarize the results here; you can find proofs
in Geometry I by M. Berger (Springer-Verlag, 1987).

Let’s begin with obtuse angles. Suppose ∆ABC has an
obtuse angle at A (that is, ∠ A is more than 90 degrees).
Clearly the other two angles must be acute. The mini-
mum-perimeter inscribed polygon has one vertex at the
foot of the altitude from A through BC, and the other
two vertices at A itself.

This is a little unfortunate. First, this degenerate tri-

angle hardly seems like a triangle at all. Secondly, it’s
not strictly inscribed, since at least one (and in fact two)
of the vertices do not lie strictly on an edge of the origi-
nal triangle. And finally it brings up the question of what
happens when a ball strikes the vertex of a polygon—
after all, there’s no well-defined normal or tangent plane
there, even though we fake one all the time in graphics
to do smooth shading on polygons.

Mathematicians shrug off this problem of reflection at
a vertex by basically defining it away—it happens infre-
quently enough that most feel it can be ignored when
studying the larger problem of general billiard trajecto-
ries. After all, to hit the vertex exactly right, you have to
hit that point exactly, which is likely to be pretty infre-
quent. Even if you think of real balls on real tables, rarely
will a ball strike two sides of the table at precisely the
same moment. Of course, that doesn’t answer the ques-
tion of what happens at such an occurrence, but it allows
you to look the other way for a while without feeling
that you’ve left a big hole in your theory. The usual fall-
back is just to say that in such a case the ball simply
reverses direction at the time of the hit.

What if you have more than three sides to your poly-
gon? A few things are true of billiard trajectories in gen-
eral. Any convex polygon has a least-perimeter inscribed
polygon, which may contain vertices of the original poly-
gon. Any strictly inscribed least-perimeter polygon is a
light polygon. Conversely, any light polygon has the min-
imum perimeter of any strictly inscribed polygon.

If your convex polygon has an odd number of sides,
then you have a unique minimum-perimeter inscribed
polygon, and if that polygon is strictly inscribed, it is a
light polygon. So break out the heptagonal tables!

On the other hand, if your convex polygon has an even
number of sides, and it has at least one light polygon,
then it will have an infinite number of light polygons.
There are some necessary and sufficient conditions that
you can check to see if you have any (and thus an infinite
number of) light polygons, but they’re too complicated
for us to cover here.

The billiard-ball problem is not completely solved in
general. Suppose you’re playing billiards on a circular or
elliptical table, or one shaped like a lima bean or the let-
ter R. Can you always find a starting point and trajecto-
ry such that the ball will return to the same point and
trajectory? When such starting conditions exist, can you
actually find them?

The simple geometry of perfect specular reflection
turns out to be equivalent to one of the most basic theo-
rems in plane geometry, which states that when two
straight lines intersect, opposite angles are equal. That’s
the essential step in Figure 1 that completes the proof.
Any time you apply this equal-angles theorem, you might
want to think about that geometry and see if that reflec-
tion sheds more light on your topic. ■
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