
Everybody has their own favorite bunch of program-
ming tricks. A few years ago, I started the “Graphics

Gems” series of books to bring together lots of these
handy techniques. The Journal of Graphics Tools
(http://www.acm.org/jgt) has continued that tradi-
tion. In this column, I thought I’d describe some little
tricks of mine that are too small even for JGT.

Small can be beautiful. Most of these techniques are
so useful that I’ve bundled them up into little libraries.
Since they’re not related in any deep way, I’ll simply pre-
sent them in alphabetical order.

The amazing expando-square
This trick is useful when working with raster images.

Suppose that you have a pixel of interest, P, and you’re
looking for the nearest pixel Q in the image that satisfies
some property. For example, you might want to find the
nearest pixel Q in the image that has the same color as P.

The brute-force way to solve this problem is to scan

the entire image pixel by pixel. For each test pixel T, we
first see if it has the desired property. If so, we compute
its distance to P. If this distance is the smallest distance
of any pixel found that has passed the test so far (or if
it’s the first pixel that passes the test), we provisionally
assign it to the result pixel Q. When we reach the end of
the image, Q is left with the nearest pixel with the
desired property.

Technically, if there are several points at the same dis-
tance, then Q will hold only one of them. Which one is
kept depends on the specific test used for T. If we only
take T if it’s strictly closer than the value already in Q,
then Q will be left with the first point encountered at
that distance.

This can be a slow procedure, particularly on big
images. One way to speed it up is to realize that we don’t
actually need the distance from P to T, which requires a
square root. Because the square root function is monot-
onic, we can just use the squared distance throughout.

This is faster, but it still can be pretty slow. And it can
be frustrating when we look at the picture. Suppose we
have something like Figure 1, where we have a little red
pixel in a green field and a red blob nearby. In this case,
we’re looking for the red pixel nearest to P. It seems
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wasteful to scan the entire image when Q is so nearby.
Let’s take a cue from my January/February 2001 col-

umn on filling and change our scanning process from
a complete scan to an expanding square. Figure 2
shows the idea. We’ll start with a square of radius 1
(equivalent to a side length of 3), which gives us the
eight pixels around P. We scan these eight pixels and
test them. If none of them pass our test, then we incre-
ment the radius to 2 (which gives us a side length of 5)
and repeat, growing the square one pixel at a time until
we find a pixel T that passes the test (and is thus
assigned to Q). At the end of each square, we look to
see if we have a pixel Q. If so, we stop right away, since
any other pixels that pass the test will be farther away
than what we have so far.

Well, almost. There’s a gotcha here, shown in Figure 3,
where the real pixel Q that we’re looking for doesn’t show
up until after we’ve found a pixel T that will actually end
up being farther away than Q. The problem, of course, is
that we’re expanding a square rather
than a circle.

The problem is easily cured, using
the idea in Figure 4. When a pixel T
passes the test, we find the circum-
scribing circle around the current
square and then find the square that
encloses that circle. Then we con-
tinue scanning until we reach that
larger square. If the current square
has a radius r, then the limiting
square has radius r√ 2.

This algorithm has a potential
slowdown that the full-scan
approach doesn’t suffer from: the
expanding square may fall off one or
more sides of the image while it’s still
scanning, as in Figure 5. If we try to
access a pixel that’s off the bitmap,
we can get an error (or bogus data,
which can be just as bad). The easy
but slow way to handle this is to test
each pixel’s coordinates before look-
ing up its value, and only proceeding
if the pixel is actually in the image. A
faster approach is to run this test for
each side of the square. If the entire
left column is off the top of the
image, for example, we can skip it entirely.

Blobs
A nice blob function can be handy for all kinds of occa-

sions. Blobs are radially symmetrical, smooth shapes—
the sort of thing you’d get if you plopped a spoonful of
pudding onto a dish.

It’s conventional to build blobs defined in the inter-
val [0, 1] and scaled so that they have a value of 1 at 
r =0 and 0 at r =1. The best blobs have a derivative near
zero at both r = 0 and r = 1, so that they blend into their
surroundings without a seam.

I like to use three blob functions. The first comes from
Wyvill, McPheeters, and Wyvill. This is the blob shape I
used in my January/February 1997 column:
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I plotted this function in Figure 6.
The derivative with respect to r is

Plugging in r = 0 and r = 1 confirms that bW has a zero
slope at both points.

By the way, it’s more efficient to implement this blob
using the form in which it was originally published:

bW(α) = 1 − [α(22 − α(17 − 4α))]/9

where α = r2.
This is a nice blob, but it doesn’t have any tunable

parameters. If you don’t like the shape, there’s not much
you can do about it. We can make a tunable blob based
on the trick that Phong shading uses to create a specu-
lar highlight out of a piece of the cosine curve. By crank-
ing up the parameter p (usually an integer), you can
squeeze together the blob and make it tighter:

I plotted this is in Figure 7 for some different values of
p. Since the derivative of cosine is sine and 
sin(0) = sin(π/2) = 0, this blob is also flat at both ends.

These last two blobs share a close relationship: bW(r) is
simply a very good polynomial approximation to bP(r, 1).

The Phong blob is useful and can be adjusted, but
there’s another version I like even more. The simple
Gaussian blob is very nice and can be easily tuned:

This is plotted in Figure 8. Like the other blobs, it has
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7 Phong blob function. (a) Plots for p = 1 (broadest) to
p = 8 (narrowest). (b) The radially symmetric blob for 
p = 1, p = 3, and p = 5.



bG(0) = 1 and bG(1) = 0. At r = 0, this has a zero deriva-
tive like the other blobs. At r = 1 the derivative is

When p = 1, the derivative at r = 1 is about −1.2, which is
pretty big and would make an obvious seam if we use this
function for blending or filtering. Happily, the derivative
falls off fast. By p =3 the derivative at r =1 is about −0.002,
which is pretty darn close to zero. The derivative drops
very quickly: at p = 5, it’s down to less than 10−9.

I like to use bG for general filtering and blending work
when I need to be able to tune the parameter, and I’m
willing to use values of p ≥ 2. For smaller values of p I
use bP. If I don’t need a tunable shape, but just some-
thing smooth and blob-like, bW is my choice.

Burp
Interpolation is an important and frequent problem in

computer graphics when you’ve got a few data points,
and you want to find some in-between values.

When you have two pieces of data, the simplest way
to blend them is with linear interpolation (sometimes
referred to as lerp). Lerp takes the two pieces of data
(say p0 and p1), weights them, and adds up the result:

P = α0 p0 + α1 p1

The most common form of lerp is the linear uniform lerp,
where the weights add up to 1. I call this a lurp. Using a
single parameter α to control the blending, we can write
the lurp P of p0 and p1 as a function L:

P = L(α, p0, p1) = (1 − α) p0 + α p1

where 0 ≤ α ≤ 1. When α = 0, P = p0, and when α = 1, 
P = p1. For intermediate values of α, we get a smooth
blend between the extremes.

If we have more than two objects to combine, we can
perform a uniform, multipoint lurp:

I’ll assume we’re given all the values pi and the weights
αi; our goal is to use them to compute P.

To compute P, we need to scale each data element pi

by a factor αi and then add up the results. Usually, these
steps are both easy to do. For example, if we want to lurp
a few RGB colors, we could just scale each component by
the corresponding weight and then add up all the com-
ponents.

But sometimes these conditions are harder to meet.
In my March/April 1997 column, I talked about the visu-
al effects created by Phong shading due to its step of
interpolating vector components and then normalizing
the result. As an alternative, I presented an angular
interpolation technique that rotated one vector into the
other in equal steps.

That operation is inherently a lurp: it takes exactly

two vectors and one interpolation running from 0 to 1,
with our parameter α moving the result from one to the
other.

Now suppose that we want to blend several vectors
simultaneously. If we weight the components, there’s
no problem. But suppose we want to use the angle-inter-
polation formula? That works with only two vectors.
Somehow we have to convert the earlier general n-
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8 Gauss blob function. (a) Plots for p = 1 (broadest) to
p = 8 (narrowest). (b) The radially symmetric blob for 
p = 1, p = 3, and p = 5.



element formula into a combination of lurps.
For this application, and others like it, we want a bilin-

ear uniform interpolation, which I can’t resist calling a
burp.

Let’s get to the general formula for a burp by looking
at an example using three elements:

I’m going to break this down into steps. In the first step,
I’ll write a two-element lurp of p0 and everything else,
which I’ll bundle together into a composite, temporary
result r1. Then I can write

Since the weights αi add up to 1, the first weight is sim-
ply α0, which is what we want to apply to p0. The remain-

ing weights are combined together in the other weight
and applied to r1, which I haven’t defined yet.

To find r1, we apply the same idea again. Write r1 as
the lurp of p1 and everything else, which we’ll roll
together and call r2:

And r2 at this point is nothing more than p2.
The trick here is to break down the big multipoint lerp

into a series of two-point lurps, which by definition uses
weights that summed to 1. If you expand all the weights
in the last few equations and cancel out common terms,
you’ll find that in the final sum each data element pi is
weighted by αi—no more and no less. Success!

So we’ve found that if we want to compute an inter-
polation of n > 2 data points, but we need to use a two-
point uniform interpolation formula, then we can do so
using burp.

Here’s the summary for computing burp. We want to
find P = r0:

We’ll start by computing rn−1 and then work our way
back up to r0, using our two-point lurp function L:

This is a handy little technique.

Easy does it
In the January/February 2000 issue, I presented a

nice easing curve for making 3D Celtic knots. Ease
curves are useful any time you want to smooth the tran-
sition from one value to another. The parameter of the
ease curves lets you adjust the speed of the transition.
Eases are useful in all sorts of applications. They’re par-
ticularly handy in animation, where they help us smooth
out the motion of objects when they start and stop.

The ease function I cooked up comes from two little
helper functions. The ease function e(r, p) is:

Like the blobs, the ease curve runs from 0 ≤ r ≤ 1 and
is controlled by the parameter p (in this case, a floating-
point value). These equations are how I originally
implemented and presented the ease curve. Figure 9a
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9 The ease
function. In
both plots, 0 ≤ r
≤ 1. (a) The old
parameteriza-
tion. The p
values run from
0 to 100, in 20
equal steps of
five. p = 0 is red,
p = 50 is green,
and p = 100 is
blue. (b) The
new parameter-
ization. The
values of p run
from 0 to 1 in
equal steps of
0.05. p = 0 is
red, p = 0.5 is
green, and p = 1
is blue.



shows the family of curves it makes as the parameter p
varies. In this figure, I varied p from 0 to 100 in steps of
five—one half of the whole range of curves is completely
missing. See Figure 9b for the shapes that the ease func-
tion is capable of creating.

Although I loved the curves produced by this easing
function, I found that adjusting the parameter was
always a kind of hit-and-miss affair because of the non-
linear nature of the control space. At small p values, a
change of 0.1 can make a visible difference; for big val-
ues, a change of 10 or more doesn’t seem to do much.
Notice how in Figure 9a the squarish shapes belonging
to large values of p dominate the range. The closest that
this function comes to a diagonal line is at p = 0.6084.
The range from [0, 0.6084] makes up the slow eases,
while [0.6084, 100] makes up the fast ones.

I spent some time trying to find a smoother range for
p. Nothing analytical seemed to work out very well. I
eventually decided on a little piecewise function m that
maps p from an input range [0, 1] to the range [0, 100]
wanted by e and does it in a way that creates a roughly
uniform spacing of the curves.

The function consists of 10 linear pieces. The first few
pieces are each 0.125 unit wide; the last few are half that
width to provide better control. Table 1 gives the end-
points for each segment. To use this data, first find the
appropriate segment of the function. Suppose that the
input p lies in the region [xj, xj+1], which has values yj

and yj+1, respectively. Then we can find the new value
for p from

(1)

Figure 9b shows a plot of e(r, m(p)). Here the value of
p moves from 0 to 1 in equal steps of 0.05. The spacing
is now roughly uniform. Specifying p in the range [0, 1]
with equal steps makes it much easier to find the ease
you’re after.

Multipoint weighting
This topic is similar to burp but has a different set of

goals.
Suppose that we have a set of points Ai located in

space. (The space can be any dimension, as long as we
can compute the distance |AB| between two points A
and B.) Each point has an associated value pi. We don’t
know anything else about the points. Specifically, we
don’t have any kind of information on connectivity (that
is, if they’re joined up into polygons or something else)
nor on what else is going on in the universe. There’s just
a bunch of points, each with a position and a value. Now
we’re given a new point P, and we want to find a value
for that point by weighting and combining the input
points:

for some weights wi.
Recall that in the section on burp we already had the

weights, and our goal was to figure out how to use them.
Here, we want to find the weights.

We’ll insist on getting only two things from our tech-
nique: one, whenever the point P is on top of one of the
inputs, it has the value of the input, and two, the values
of P vary smoothly. I can’t say too much more because we
don’t know anything about the points themselves. For
example, we might want to say that whenever P lies on
the straight line between two points A and B, P is only
made up of values from those two points. But what if
some other point C also lies on that line and is in fact
closer to P than A? There could be a lot of these little
unexpected gotchas, so I’ll stick with these two simple
conditions.

I tried a lot of approaches to solving this problem, but
they all left something to be desired. For example, I tried
placing little blobs (like the ones in the blob section) on
every input point and using the height of the blob at
every pixel as the weight for the corresponding input.
But if the blobs got far enough apart, that left big, empty
areas in the image where all the blobs were essentially
zero. The results were constant in those regions or else
got very noisy as these tiny numbers fell below the abil-
ity of the computer to sensibly manipulate them.

Then I tried computing the distance of each input to
every other input and combining those distances with
the location of the input point P to compute relative
weights for each pair of inputs. I then used those inputs
to figure out a smooth set of individual weights.

These approaches were all too complicated and pro-
duced results that had seams, edges, and other prob-
lems. Surely there was a technique that was
simultaneously fast, easy, and without artifacts. One
that would fill in the whole image with smoothly inter-
polated values, no matter whether the input points were
close to one another, far, or distributed in uniform or
nonuniform ways.

I kept plugging along and one evening I found a sweet
little technique that works just fine for this problem. Let’s
begin by finding the distance di as the distance between
P and each of the n input points Ai:

di = |P − Ai|

Now we’ll normalize the distances, so that they sum
to one. I’ll call the normalized distances gi:
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Table 1 . Data for the piecewise mapping function m(p) for ease curves.

Input xi 0 0.125 0.25 0.375 0.5 0.625 0.75 0.8125 0.875 0.9375 1
Output yi 0.01 0.08 0.18 0.35 0.6084 1 2 3.5 6 15 100



To make our formula, let’s look at each weight inde-
pendently. Suppose we want to compute w0.

If P = A0, then we want w0 = 1. Since we’re on top of
A0, the normalized distance g0 = 0. So let’s provisional-
ly assign w0 = 1 − g0. Still thinking about weight w0, let’s
now suppose that point P is sitting on top of input point
2, so P = A2. Now we want w0 to be zero, since only point
2 should contribute to the sum. Because we’re on point
2, g2 = 0. To send our weight w0 to zero, we just need to
multiply it by 0. Tacking this onto our value so far gives
us w0 = (1 − g0)g2. The same argument applies to all the
other points, so if we have three points, then 
w0 = (1 − g0)g1g2. Similarly, we can apply the same argu-
ment to the other weights, finding that w1 =(1 − g1) g0 g2

and w2 = (1 − g2)g0g1.
What happens in between? Well, the closer we are to

a given point the stronger its weight, which is just what
we want.

Here’s the general recipe:

To get our weights wi, we normalize the vi:

That does the trick! We plug these weights into the for-
mula for P at the start of the section, weighting the value
pi at each Ai by wi and then add them up.

Because everything is continuous and smooth, we get
just the results we want. On top of an input point, we get
just the value for that point. When we’re not on a point,

the nearest points have the greatest influence and the
others fade out slowly. The values of P are smooth and
there are no blank spots where all the weights drop out,
nor any flat spots where all the weights are essentially
the same.

Figure 10 shows this formula applied to a three-point
interpolation in the plane. Since there are only three
points involved, I colored each weight with a different
primary color. Figures 10a through 10c show the
weights for each point separately, while Figure 10d
shows them all overlaid. If you added up the color val-
ues at each pixel, you’d find they always sum to 1.

Figure 11 shows a more complicated example. In
Figure 11, I’ve also applied the ease function from the
last section to the weights just before using them; this
also means I had to also re-normalize them:

As the equation shows, I used the mapping function
m(p) described earlier to make it easier to choose good
values for the ease curve.

Combining one technique with another is the kind of
thing that becomes easy when all the routines are in a
library. I find that when I’m working on an algorithm it’s
nice to experiment by combining techniques like this.
And this is a good example of my claim earlier that the
ease curve was useful in all sorts of places! Notice that
in Figure 11d each blob spreads out until it hits another
blob of stronger value. The result is a rough version of a
Voronoi diagram for the colored points. Of course, push-
ing the blobs this far defeats our original purpose of cre-
ating a smoothly varying field, but it’s fun to poke
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10 Interpolating three points in
the plane. In parts (a), (b), and (c),
each weight has been assigned to a
different color channel. Note how
the value is a maximum right on top
of the corresponding input point,
and drops to zero at the other
points. (d) The three channels
overlaid.
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around to see what happens when we push algorithms
to their extremes.

Remember that this interpolation technique doesn’t
care how many dimensions it’s working in, so you can
interpolate 3D volume densities, 4D space–time events,
or the genetic codes for 9D bumblebees as easily as col-
ors or heights.

A final word
I didn’t know about the techniques in this column

before I cooked them up. Some of them seem so nice
that they must have been discovered before, but I
haven’t seen them reported. If you’re already familiar
with some of these techniques, I’d love it if you could

send me a note with a pointer to the publication where
you saw it before.

There’s nothing like figuring out an elegant solution
to a problem. When I find one of these, I usually try to
find a way to encapsulate it into a stand-alone function
call or two, so I can put it into a library. All the procedures
in this column are simple to write up and implement. I
hope you enjoy using them as much as I have. ■

Readers may contact Glassner by email at
andrew_glassner@yahoo.com.
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11 Multipoint weighting. (a) Some
colors in the plane. (b) Easing the
weight with m(.625). (c) Further
easing with m(.6625). (d) A lot of
easing with m(.8625). (e) A height
plot for the grayscale intensity of
Figure 11 b.


