
There’s a revolution coming in the field of comput-
ing, and it’s coming from the smallest of all places:

the subatomic particles that form the basis of all matter.
Contrary to what some of us learned in high school,

photons aren’t billiard balls and electrons aren’t little
planets circling a nuclear sun. Those conventional mod-
els work well up to a point, but when you look more
closely, they begin to break down and a new picture
emerges. And from this picture, we obtain a new way to
process information: the quantum computer.

Quantum computers will be useful for all kinds of com-
puting. In addition to computer graphics they will have
applications in cryptography, biology, and communica-
tions. All that makes them worth looking at, but even
better, this is just incredibly cool stuff. The world of quan-
tum physics is strange and beautiful. It’s full of all sorts
of interesting philosophical questions, including the
nature of reality and consciousness. We won’t get into all
those lofty questions here, but we’ll see some of the
bizarre ways that reality behaves at the quantum level.

In this column, we’ll get started with a look at the
general principles of quantum mechanics as they apply
to quantum computing. In the next issue, I’ll present
some of the math behind actually creating quantum
algorithms.

You may wonder why I’m tackling this topic here,
since it doesn’t look like mainstream computer graph-
ics. The reason is that quantum computing is an exciting,
new way to think about algorithms of all sorts, includ-
ing those for graphics. Someday we’ll all be using quan-
tum computers, and writing quantum algorithms. I’m
just getting us off to an early start!

Before we get going, I need to point out that quantum
computing is still in its infancy. The most powerful quan-
tum computer built to date is a scant 3 bits wide. But
these tiny machines have proven the basic theory’s valid-
ity, from computation to error correction. The future is
ripe with promise.

Quantum physics explained
The behavior of subatomic particles is the subject of

quantum physics, so named because at this incredibly
small scale, everything seems quantized, or broken up
into tiny pieces. Energy, space, and perhaps even time
aren’t continuous but are made up of tiny discrete units,
like beads on an abacus.

Quantum physics has a well-deserved reputation for
being counterintuitive. The behavior of the subatomic
world comes as a surprise to almost everyone who
encounters it. Physics, after all, has developed like most
of the other physical sciences: people study a phenom-
enon, hypothesize about how they think it’s working,
create a mathematical description of that mechanism,
and then check to see how well that math matches (and
predicts) reality. Human intuition and insight often
drive this process. For example, if we take a ball to the
park and roll it on the grass, it will roll along for a while
before slowing down and stopping. Why doesn’t it roll
forever? Studying the problem, we can slowly build a
picture of the world that includes things like how grass
and dirt create friction and how gravity makes it hard
for the ball to roll uphill. Our explanation matches our
intuition of the world, and we’ve learned some physics.

In the subatomic world, our intuition often proves
misleading. Stuff goes on that looks and sounds like
magic: objects are in several places at once, a cat can be
dead and alive at the same time, and you can instantly
change the state of a particle that’s halfway across the
universe. This is just the tip of the weird iceberg that
quantum mechanics describes.

Amidst all these oddities, we must remember two
important truths. First, as weird as it is, quantum physics
works. The math describes the reality, even if we can’t
explain why it does so in a satisfying way. Second, we can
use these weird properties to make powerful computers.

Today we use classical computers. The coming
machines based on quantum mechanics are called quan-
tum computers. Here are three examples of what quan-
tum computers will do for us one day:

� Fast Z buffers: The Z buffer is a great way to figure out
visibility. Suppose you have an unordered list of N
opaque objects at a pixel, and you need to find the
closest one. On a classical computer you have to look
through all N objects, which require at least N steps.
On a quantum computer, you can find the nearest
object in order √Ν steps.

� Instant radiosity: Radiosity is one way to compute a
synthetic image. We describe the world as a collection
of volumes and surfaces and follow the light in the
scene as it propagates, hitting one surface and then
another, around and around. We’ve seen lots of clever
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algorithms for speeding this up, but high-quality
radiosity still requires a lot of computing time and ener-
gy. Quantum computers can compute a radiosity solu-
tion in only one step, taking a tiny fraction of a second.
As we’ll see later, we’ll typically take a few more steps
to process the solution before it’s useful, but if N is the
number of surface elements in the scene, it will take
no more than order √Ν steps to locate the complete
solution. (That estimate uses today’s theories; tomor-
row we might be able to do it even faster.)

� Double-speed transmission: Suppose you’ve comput-
ed an image and you want to send it to a friend. (For
simplicity, let’s assume you don’t want to compress
it.) To send the image requires you to transmit N bits:
the product of the width times the height times the
number of bits per pixel. With a quantum computer,
if you’ve shared N/2 quantum particles at any time in
the past (even years ago), then to send the image now
you’ll only need to send N/2 bits.

Shopping for a quantum car
I’ll forego a mathematical treatment to first get the

ideas in place; we’ll get to the details next time. Let’s
begin with a rough (and admittedly unrealistic) analo-
gy: shopping for a quantum car.

Suppose that we want to buy a new car, and we’ve set-
tled on a particular make and model. This particular
model has three options: the number of doors, the body
color, and whether it’s a convertible or sedan. When we
choose our options, we specify a particular configura-
tion of the car, which I’ll call a state.

Let’s indicate each of these three choices with a vari-
able. We’ll set f = 0 if we get a two-door car and f = 1 if it’s
a four-door. We’ll set b = 0 if the color is red and b = 1 if
it’s blue. Finally, s = 0 if the car is a convertible and s = 1
if it’s a sedan with a hard top. Taken together, these three
choices define the car’s state. If we write the vector [fbs],
then we can name any of the eight possible states.

For example, if we set f = 1, b = 0, and s = 0, then we
have the state [100] indicating a four-door red sedan.
The important thing to note is that we need only three
numbers to define a state.

Now suppose that on entering the showroom, you dis-
cover something strange. The dealer tells you that he
has only one car but it’s completely hidden under a blan-
ket. The dealer tells you that nobody has ever looked
under the blanket. In fact, he tells you that during the
middle of the night, when nobody was around, robots in
the showroom made the car. They were programmed to
start themselves up in the middle of the night, select a
state at random using an unpredictable random-
number generator, build that particular version of the
car, and then place the blanket over it. Hence, nobody
has any idea what state the car is in.

I’ll assume that the blanket is really opaque and is
bulky enough that it doesn’t reveal the car’s shape. In
other words, until we take the blanket off, we really can’t
tell what’s under there, no matter how hard we try.

Suppose further that the dealer tells you that this has
happened to 100 other dealers before, and they’ve
shared with each other what they saw when they final-
ly took off the blanket. For example, perhaps four of the

dealers got a car in state [001]—that is, a two-door red
hardtop.

We can summarize the odds of finding each kind of
car in one expression:

.1[000] + .2[001] + .3[010] + .4[011] +
.3[100] + .6[101] + .4[110] + .3[111] (1)

Later, we’ll want to distinguish between the weight
associated with a given state and the probability of get-
ting that state. It’s easy to convert one to the other: the
probability is the square of the weight. For example,
the weight for state [101] is 0.6, so the probability of
getting that state when we remove the blanket is 0.62

= 0.36. Notice that if we add up all the probabilities
(not the weights) we get exactly 1.0. This just says that
when we take the blanket off the car, we’re certain to
get something.

Until we look under the blanket, we don’t know which
of the eight states of the car is under there. If someone
asks us, “Is that car in state [110]?”, the best answer we
can give is, “There’s a 16 percent probability that when
we look, that’s what we’ll find.” The critical point here
is that we need all eight probabilities to describe what’s
under the blanket, until we look. Comparing this to our
earlier discussion, we can say that describing any given
state requires only three numbers, but that when the car
is still unseen, we need eight numbers to describe its
total situation—one probability for each possible state.

Now suppose that before we look under the blanket,
we push the car forward by a couple of feet. Whatever
car is under there—whether it’s [010] or [011] or any-
thing else—it’s been pushed forward, and its odometer
has crept upward. So we can do things to the car with-
out knowing just which one it is yet.

So far I hope you’ve found this thought experiment
straightforward. Now I’m going to get weird and ask that
you stick with me. It may sound like science fiction or
like a silly philosophical distinction, but this way of think-
ing will prove important, because it will show us how to
exploit the parallelism inherent in quantum computing.

When I first asked you to imagine walking into the
dealer’s showroom and looking at the blanket covering
the car, you may have thought to yourself something
like, “Okay, the car is obviously in one of the eight pos-
sible states for this model, but we just don’t know which
one yet. The probabilities found by the other dealers tell
us what we’re likely to find when we look under there,
but that doesn’t change what’s actually under the blan-
ket. Were I allowed to peek, I’d find that the car is in one
of the states, and that’s that.”

Suppose instead I asked you to imagine that the car is
in all eight states simultaneously. I don’t mean that the
car is partly in one state and partly in another, like the
way a Gryphon is part lion and part eagle. I also don’t
mean that it’s a blend of several states, like the way
lemonade is partly water and partly lemon juice, but
inseparably mixed. And I don’t mean that the car is
quickly shuttling between states somehow, rapidly
switching between, say, a convertible and a sedan.
Rather, imagine that the car is in all eight states at once.
Somehow, while it’s under the blanket, the car is in some
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overlapping reality where it’s a sedan and a convertible,
red and blue, and two-door and four-door, all at once.

Naturally, you’d want to pull the blanket off and see
what this crazy mixed-state car looks like. Perhaps it’s
some ghostly multiple-exposure 3D image of eight dif-
ferent cars all sharing the same space, with the states
with higher probabilities looking a little sharper, or more
opaque, than the unlikely states. But in this experiment,
every time you pull off the blanket, you observe one car,
solid as can be, in one state. Something magical happens
when you pull off the blanket, causing the car to assume
just one of its possible states. Which state will it be?

In Equation 1, I assigned a weight (and thus a proba-
bility) to each of the eight states. For example, 9 percent
of the time we’ll find that the car is in state [100] and 4

percent of the time we’ll get a car in state [001]. We can’t
pick which state we’ll get when we look; we can only
predict what the probabilities are and then see what we
get. Of course, if one of the probabilities is nearly one
and the others are nearly zero, then we’re likely to get a
car in that high-probability state. If one probability is
exactly one and all the others are zero (because they
must all add up to one), then we’ll get that state for sure.

The point here is that when the blanket is covering
the car, the car is in all states simultaneously. When we
pull off the blanket and observe or measure the car, it
“snaps” into one of the eight states. The probabilities
associated with the states determine the state the car
goes into. Once we look at the car, the probability for
that state becomes one and all the others become zero,
so if we look away and then look back, the car will stay
in the same state. Even if we cover it up again, it won’t
mysteriously go back to the simultaneous many-states
condition. Once observed, the state remains. So if we
see a hardtop, we keep a hardtop.

This is one of the key concepts behind quantum com-
puting. Although this was a far-fetched description of a
car salesroom, it’s an accurate description of the quan-
tum realm. Whatever it may mean philosophically, for all
intents and purposes subatomic particles like photons
and electrons, before they are observed, can really be in
multiple incompatible physical states at the same time,
in ways that larger objects (like cars) never are and
seemingly never could be. Thousands of experiments
have verified this. This idea (and some others we’ll cover
in the next section) is critical to creating quantum com-
puters.

Quantum measurement
There’s another interesting characteristic of quantum

systems that’s important to understanding how quan-
tum computers work. I’ll describe this effect using an
example based on the polarization of light. Polarization
comes from the wave nature of light. A detailed discus-
sion of polarization here would take us far from our
main subject, so let’s use a rough but common analogy.
Imagine a piece of rope: one end is in your hand; the
other end is tied to a wall. If you shake the rope up and
down, you’ll create a vertical disturbance that will trav-
el down the rope from your hand to the wall. If you
shake it from left to right, you create a horizontal dis-
turbance. Similarly, a photon that travels through air
can be thought of as vibrating up and down (vertically
polarized), left and right (horizontally polarized), or at
any other angle with respect to the floor. The key point
is that the photon wiggles as it travels and that these
wiggles occur within a flat plane.

Now suppose that you make a flexible material that
microscopically looks something like a jail-cell door,
composed of many vertical parallel bars with thin gaps
between them. For a photon to get through the materi-
al, it must wiggle in the plane that is parallel to the bars,
as in Figure 1. Such polarizing filters (or film) are real—
they’re common in sunglasses. When sunlight bounces
off a highway surface, it often becomes horizontally
polarized in the process. Polarizing sunglasses are built
so that when we wear them, the polarizing filters are
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1 Several dif-
ferently polar-
ized photons
striking a polar-
izer. Only pho-
tons aligned
with the filter
pass through.
(a) A vertically
oriented filter. 
(b) An obliquely
oriented filter.
(c) A horizontal-
ly oriented
filter.
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oriented vertically, and thus block the horizontally
polarized glare.

Now let’s carry out a little experiment. Our equipment
list is short: a bright source of light (a laser will do nice-
ly), a white screen (like a movie-theater screen), a light
meter (like the one on a 35-mm camera), and three
pieces of polarized film. We’ll assume that the photons
coming out of the laser have an equal probability of being
polarized in every direction—that is, they’re randomly
polarized. If we look down the barrel of the laser toward
the screen and imagine we’re looking at a clock, as in

Figure 2, vertically polarized photons will travel in a
plane containing 12 o’clock and 6 o’clock. (I’ll just refer
to directions from now on with just one of the two hours
that define the plane.) Horizontally polarized photons
lie in the 3 o’clock plane; the other photons will be polar-
ized in all the other planes.

Figure 3 shows the final experimental setup: a laser
shines onto a screen. (I’ll assume that the screen is
instrumented, so we can plug a meter into the back to
read out how much light falls on the screen surface.)
One by one, I’ll insert three polarizing filters: a vertical
one right after the laser, a horizontal one just before the
screen, and a 45-degree filter in between them.           

The experiment has five steps. In step 1, we point the
laser at the screen and use the light meter to measure
how much light is reflected, as in Figure 4a (next page).
For simplicity, let’s say that the meter in Figure 4a
records A units. That’s our reference value for how much
light reaches the screen.

Now for step 2. Place a piece of polarizing film in front
of the laser, orient the film vertically (that is, at 12
o’clock), and measure the light hitting the screen, as in
Figure 4b. We’ll find it’s A/2, meaning that the filter has
blocked about half of the light.

To anticipate what’s to come, look at Figures 4c
through 4e. When we have a single sheet of polarizing
film between the laser and the screen, we get a reading
of A/2. When we have two sheets one after the other, at
90-degree angles to each other, we find that the light
meter reads 0. If we then place a third sheet of film
between these two, oriented at 45 degrees to them, the
light meter jumps up to read A/8. This definitely seems
weird, so let’s look at this experiment more closely.

In step 2, we had a single piece of vertically polarized
film between the laser and the screen, and half the pho-
tons made it through. This almost makes sense, but
remember that the laser generates randomly polarized
photons, so there’s no preference for photons to travel up
or down as opposed to any other direction. If the polar-
izing material really only lets photons traveling parallel
to the bars get through, then only a small number should
pass through the filter. In other words, we’d expect a few
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2 A laser and a clock face for specifying polarization.
(a) A vertically polarized photon. (b) A horizontally
polarized photon. (c) Many randomly polarized pho-
tons.

3 The general setup for the polarization experiment. A
laser shines onto a screen. Near the laser sits a vertically
polarizing filter, a diagonal polarizer, and a horizontal
polarizer.



photons to arrive in exactly the plane containing 12
o’clock but most of them will be at an angle. Because the
filter works by blocking photons that aren’t parallel to
the bars, all these angled photons should have been
stopped by the filter. Only a few photons should hit the
screen—certainly far less than half. What’s going on?

A natural interpretation is to think that the material
lets through photons polarized in a direction close to the
filter’s orientation but not quite aligned with it. But if
we measure the polarization of the photons coming out
of the filter, we find that’s not the case: each and every
one of them is vertically polarized.

Because all the exiting photons are vertically polar-

ized, and only a few of the incoming photons arrive in
that state, there are only two explanations. Either the
material blocks most of the incoming photons and emits
vertically polarized photons on its own, or the material
changes the polarization of the incoming photons.

The second explanation is the right one. Our intuition
might suggest that some of the incoming photons are
adjusted somehow as they pass through the polarizer.
Perhaps a photon is robbed of its side-to-side motion, leav-
ing just the up-and-down part. In other words, we might
imagine that the polarizer somehow turns the photons or
that they turn themselves. Perhaps they arrive traveling
at some angle to the bars, but to get through, they rotate
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4 The polariza-
tion-filter exper-
iment. (a) Step
1: The initial
setup shines the
laser onto the
screen. The
light meter
reads A. 
(b) Step 2: We
insert a vertical
polarizer into
step 1. The light
meter reads
A/2. (c) Step 3:
We insert a
horizontal
polarizer into
step 1. Again,
the light meter
reads A/2. 
(d) Step 4: We
place a horizon-
tal polarizer and
then a vertical
one into step 1.
The light meter
reads 0. 
(e) Step 5: We
place a polarizer
at time 10:30
between the
two polarizers
in Step 4. The
light meter
reads A/8.
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(c) (d)
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themselves to squirm between the gaps and then emerge
traveling in that new direction. It turns out that there’s no
reasonable physical explanation for how photons or fil-
ters could do this, so we need to keep looking.

To find the explanation, let’s look at it this way. The
polarizer, as designed, can only do two things: pass pho-
tons aligned with (parallel to) the polarization direction
and stop those that are perpendicular to it (either by
reflecting or absorbing them). This description doesn’t
predict what will happen to photons that arrive at an
angle, because no in-between answers exist. Such pho-
tons can’t be partly passed through or partly blocked,
because you can’t cut a photon into pieces; it must be one
or the other. What happens if a photon arrives so that it’s
polarized in the plane containing 12:30, as in Figure 5?
It has to be categorized as either parallel or perpendicu-
lar, since passing or blocking the photons are the only
choices.

Think of it this way: If the photon must be polarized
one way or the other, what are the probabilities that it
would end up in each state? Here’s one place where our
intution works as we’d expect. The closer a photon is to
vertical, the more likely it will be classified as vertical,
and the same thing holds horizontally. Let’s draw out
the nearly vertical photon in Figure 5a in Figure 5b. At
12:30, the photon makes an angle of 15 degrees with
the vertical bars of a vertically oriented polarizer.
Because the polarization vector has length 1, the verti-
cal component is sin 15 ≈ 0.97 and the horizontal com-
ponent is cos 15 ≈ 0.26. We see from this that there’s a
probability of (sin 15)2 ≈ 0.93 that this photon will be
vertically polarized.

But it’s not just a matter of interpretation. By virtue
of being classified as one or the other, the photon is
changed. This is called the measurement postulate of
quantum mechanics. This isn’t how our world tends to
work, so let’s use an analogy to nail this idea down.

Suppose that I ask you your favorite color and you tell
me that it’s yellow ochre. Then I lock you in a room with
two doors (one red, one blue) and state that the only way
out of the room is through the door painted with your
favorite color. You protest that neither of these is your
favorite color, since you prefer yellow ochre, but I’ll hear
none of it—you must pick red or blue to move on. You
decide red is closer to yellow than blue and go through
the red door. By choosing that door, you’re transformed.
By virtue of that choice, you have a new favorite color.
You forget yellow ochre, as though you’d never heard of
it. You selected the red door and went through it. Now
whenever anyone asks, you say that red is your favorite
color. If we bring a million people into that room, each
with their own favorite color, after leaving the room they
will all now like either red or blue, without exception.

Now suppose that after you’ve passed through the red
door, I lock you in a new room with a violet door and a yel-
low ochre door and again ask you to go through the door
with your favorite color. The fact that you once loved yel-
low ochre has disappeared as though it never existed; your
favorite color has simply been redefined. You now pick the
violet door because it’s closer to your favorite color of red
and from then on violet will be your favorite color.

There are two points to this weird experiment. First,

no matter what your favorite color was when you went
into one of these rooms, when you passed through a
door its color became your favorite color from then on.
Second, your choices weren’t up to you; they were
imposed on you from the outside. In summary, the
experiment gave you a limited number of choices for
expressing something about yourself and by picking one
of those choices it became true for you.

This analogy with the doors captures one of the real-
ities of quantum measurement. When you measure an
object, the act of measurement causes the measured
object to take on one of the allowed outcomes and then
it stays in that configuration. When a photon strikes the
vertically oriented polarizing material, it becomes either
vertically or horizontally polarized and is thus passed
through or blocked. No in-between states exist. A pho-
ton that arrives vibrating in the 1 o’clock plane isn’t
adjusted to rob it of its side-to-side wiggle; it simply
changes its nature, and most photons arriving in this
state become vertically polarized. We say that the pho-
ton is projected into one of these two states: horizontal-
ly or vertically polarized.

Quantum measurement in practice
With these tools under our belts, now we can say what

happens to any photon in Figure 4b when it strikes the
polarizing filter. If the photon is precisely vertically
polarized, then it’s already in one of the two allowed
states and passes through. Otherwise, we can break
down its motion into a horizontal component and a ver-
tical one, as in Figure 5. The relative sizes of these pro-
jections give the relative probabilities that the photon
will go into that state. For example, at 1 o’clock the ver-
tical projection is √3 as large as the horizontal one, so
the photon is three times as likely to become vertically
polarized as horizontally. At 45 degrees, the odds are
50/50.

Now we know why the meter reads A/2 in Figure 4b.
When random photons hit the polarizing filter, half of
them are more vertical than horizontal and therefore
get projected into the vertical state and pass through.
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component is parallel to the vertical bars, while the x component is perpen-
dicular to them.



The rest get projected to the horizontal state and the fil-
ter reflects or absorbs them.

Let’s move on to step 3 of the experiment. We’ll take
out the vertical polarizer and put in another sheet of
polarizing material that has the bars oriented horizon-
tally, as in Figure 4c. As before, about half of the ran-
domly polarized incoming photons will be projected
parallel to the bars (in this case horizontally) and pass
through, and the rest will be projected into a vertical
state and blocked. When we run the experiment, the
light meter again reads A/2.

In step 4, we’ll put the vertical polarizer back in, just
after the laser but before the horizontal polarizer, as in
Figure 4d. The photons that make it through the first
filter are vertically polarized. Thus, we’d expect that
the second, horizontal polarizer would block every one
of them. And that’s just what happens: the light meter
reads 0.

Now we get to the fifth, final, and weirdest stage of
the experiment. I’ll leave the two sheets of film where
they are, so the meter reads 0, and I’ll put a third sheet
of polarizing film between them, rotated by 45 degrees,
as in Figure 4e.

Under everyday conditions, we’d expect the light
meter to read zero. After all, no light was getting through
the two filters in Figure 4d. Putting another filter in
between them shouldn’t make a difference, right? Not
so. The light meter actually reads A/8.

This makes sense if we interpret it according to our
new rule that a measurement changes the state of the
object being measured. All the photons that strike the
45-degree polarizer arrive in a vertically polarized state
because they made it through the first filter. Now this
new filter once again projects photons into one of the
two states it allows: parallel or perpendicular to its bars.
Like the experiment involving two doors and a favorite
color, the previous polarization about the photon is lost
when it’s remeasured. In this case, every incoming pho-
ton is polarized vertically, and upon projection onto two
axes that are each at a 45-degree angle to it, the photon
has an equal probability of being projected into two new
polarization directions. So half the arriving photons get
projected into one state and get through, and the other
half are projected into the other state and are blocked.

To summarize this final version of the experiment, ran-
domly polarized photons leave the laser and hit the first
piece of film. Upon striking the film, they’re forever trans-

formed, with a 50/50 chance of becoming either verti-
cally or horizontally polarized. Only the latter photons
get through. Now these photons (half the original num-
ber emitted by the laser) reach the second filter and once
again are transformed into a new diagonal state. Half are
projected so that they make it through, so one-quarter
of the original photons reach the third filter. Here again
they’re projected into either a horizontal or vertical state
with equal probability. Half of them become horizontal-
ly polarized and get through this last filter, so one-eighth
of the original photons strike the screen.

The essential point of this section, and the reason for
presenting this experiment, was to make the following
statement: When we measure a quantum object with
respect to a preselected set of choices, the object is pro-
jected into one of those choices. The object actually
changes. That’s the measurement postulate of quantum
mechanics.

Returning to our automobile example from the previ-
ous section, the act of measurement was the removal of
the blanket. When we looked at the car, we measured it,
and it was projected into one of the eight allowable states.

You might be wondering why polarizing material is
special, or why we, as the observers of the car, are spe-
cial. After all, aren’t things being observed all the time?
Perhaps the blanket was observing the car. I’ve never
heard a blanket talk to me, but it’s not impossible that the
blanket was looking at the car. Was the blanket observ-
ing it? What if a dog peeked under the blanket? Did the
car then get projected into one of its eight states? What if
a snail looked under the blanket? What if someone else
looked under the blanket, but I closed my eyes. Did the
car get projected for that other person but not for me?

This line of questioning gets murky very quickly. This
business of things changing themselves when they’re
observed presents all kinds of interesting philosophical
questions like what it means to observe something and
what it means to be an observer. Because it’s so weird,
physicists have sought to understand exactly what’s
going on here. The jury is still out on a satisfying expla-
nation, but the reality of the situation can’t be denied: of
the thousands of experiments that have been run to
investigate this behavior, every single one has confirmed
this model. This property, too, is part of what makes
quantum computers work.

Quantum radiosity
To bring this material home to graphics, let’s look at

an application by sketching out the broadest outlines of
a quantum radiosity algorithm. To keep things from get-
ting too messy I’ll assume that we’re making a black-and-
white image (a color image wouldn’t require any
changes to the algorithm—just more bits in the compu-
tation). In this section, when I speak of light, I’ll mean
light at a single frequency.

Let’s summarize the critical points I’ve previously
mentioned:

� Before we examine it, a quantum particle can exist
simultaneously in an infinite number of incompatible
states (for example, our quantum car that was in eight
states at once).
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When we measure a quantum object 

with respect to a preselected set of

choices, the object is projected into one 

of those choices. The object actually

changes. That’s the measurement

postulate of quantum mechanics.



� We can operate on quantum particles in a superim-
posed state without knowing anything more about
them (for example, we could push the car while the
blanket was still over it).

� When we finally look at a quantum particle, it’s pro-
jected into a particular state, depending on the prob-
abilities of its allowed states (for example, when we
looked at the car, it became one particular car and
stayed that way).

� The measuring device defines the allowed states that
a quantum particle can be projected into (for exam-
ple, the two directions in which our photons got polar-
ized depended on the orientation of the grating).

In my next column, I’ll show that we can build quan-
tum versions of classical computer gates (called quan-
tum gates), which let us mimic any classical computer
with a quantum computer. In fact, quantum gates are
probably more powerful than classical gates.

Here’s how our quantum radiosity computer will
work. First, we set up a huge input register consisting of
thousands of short chunks of bits, one after the other,
and then one last chunk at the end. These bits are quan-
tum bits, or qubits, which we’ll discuss next time. For the
moment, just think of a qubit as a single bit that can be
0 or 1, or some combination of 0 and 1 with an associ-
ated probability that it’s one or the other.

Each chunk of bits except the last corresponds to a
single surface in our scene. For simplicity I’ll ignore vol-
umes, although you can just think “surface or volume”
every time you see “surface” and everything will work
fine. As shown in Figure 6, each chunk holds five values:
a pointer, three numbers, and a matrix. Respectively,
these are the object information, the amount of light
being emitted from the surface, how much incident light
is aborbed, the total amount of incident light, and how
much of the light not absorbed (that is, reflected light)
falls onto every other surface in the scene (this is the
famous matrix of radiosity coefficients). In the very last
chunk of the register, we initially place a string of zeros
for placing the free energy in the scene.

Now we’ll turn some of those precious input bits into
qubits. Every bit in the chunks that represent how much
light is reflected and absorbed at each surface is turned
into a state that simultaneously encodes a 0 and 1 with
equal probabilities. That is, if that register is two bits
wide, then it simultaneously holds the binary repre-
sentations for 00, 01, 10, and 11 with equal probabili-
ties, so that register holds all two-bit binary numbers at
once. In fact, the entire system represents all possible
incident and reflected values simultaneously. Every pos-
sible binary value for the light energy arriving at and
leaving from every surface is represented with equal
probability at the same time.

Next, we compute the amount of free energy bouncing
around the scene—that is, the amount of light not
accounted for. If we used a classical computer, we’d com-
pute that by using standard radiosity techniques: we’d
follow the light around the system and compare how
much light is left to be shot or gathered from each sur-
face. If that number wasn’t zero (or below some thresh-
old), then it would tell us to run another iteration of the

radiosity computation. But in our quantum computer,
we have all the possible values coexisting at once. So the
free-energy register contains the free energy for every
possible number in every coefficient, simultaneously.
One of those superimposed states is our answer. Thus
we’ve computed the solution in one step, as I promised
earlier.

Now we search for the state (that is, the configura-
tion of bits) with the smallest free energy. Because
radiosity is deterministic, there’s only one solution with
zero free energy. (Technically, we’d want to make sure
first that none of the coefficients are set to zero.) This
search can be carried out with a variation on a search-
ing algorithm invented by Grover, which lets us find this
least-energy state in a number of steps proportional to
the square root of the number of objects that need to be
searched. For efficiency’s sake, we’d probably want to
limit our possible solutions to exclude crazy ones, like
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Repeat for each patch

6 The structure of the monochrome quantum radiosity register. Each
surface has five entries: a pointer to the surface data; the emitted,
absorbed, and incident light; and the coupling matrix to the rest of the
scene. At the end of the register is a space for placing the free energy in
the scene.

Further Reading
Quantum computing is such a new field that it grew up with the

World Wide Web. Much of the research in the field is available in
electronic form on the publicly accessible Los Alamos Physics
Preprint Archive at Los Alamos National Labs, located at
http://xxx.lanl.gov/abs/quant-ph. The LANL server contains mostly
Postscript papers but converts many of them into PDF and other
output formats on demand. These papers are usually preprints of
papers that later appeared in journals, although some are exclusive
to the archive.

The LANL server has two excellent introductory articles. A good
place to start, and my source for the experiment described in
Figure 4, is An Introduction To Quantum Computing for Non-
Physicists by Eleanor Rieffel and Wolfgang Polak (LANL 9809016).
Quantum Computation by Dorit Aharonov (LANL 9812037) offers a
good discussion of where quantum computing fits into the general
context of computation and complexity theory. Both of these also
describe Grover’s quantum searching algorithm.

An entire book’s worth of information is available in John
Preskill’s course notes, available at http://www.theory.caltech.edu/
~preskill/ph229.

If you want to get a leg up on quantum mechanics in general, I
highly recommend The Structure and Interpretation of Quantum
Mechanics by R.I.G. Hughes (Harvard University Press, 1989). The
book digs right into the math from the beginning. Although it’s
well presented, it can be rough sledding. If you’re not in a rush,
you might want to read my column in the next issue for an
overview of the terminology and notation before plunging into the
general theory.



surfaces reflecting more energy than is hitting them or
coffee cups glowing as brightly as supernovas. This algo-
rithm changes the probabilities on the registers, so that
we go from a state where every answer is as probable as
every other to a state where the solution with zero free
energy has a probability of almost one and all the others
are almost zero.

Then we look at the output registers, which cause the
registers to project from the simultaneous-possibilities
state to one particular state. Because we changed the
probabilities, the answer we want is almost certainly the
one we observe. But if we measure the free energy and
find that it isn’t zero, then the system got projected to
an unlikely state. We would just have to run through it
again, knowing that the odds are with us that this time,
when we observe the registers, they will be projected to
the zero-energy state.

To summarize, we create a situation where we have
every possible complete system of radiosity coefficients
living simultaneously in the registers and then pick the
one that has zero free energy.

If this description is a bit confusing, don’t worry. First,
I ran through it quickly; we’ll see more detail next time.
Second, this is weird stuff, and it can take a while to
sink in.

I’m not suggesting that we can do quantum radiosity
tomorrow. If we have 5,000 surfaces in a scene, then a
brute-force encoding using 32-bit numbers would
require about 800 million bits. As I mentioned before,
the most powerful quantum computers built to date
have 3 bits, so they’re not powerful enough quite yet.
The procedure that I just described is about as simple as
a quantum algorithm can be and relies on brute force
for storing and computing everything. We can certain-
ly do much better. For example, we know that most
radiosity matrices are sparse—that is, mostly zero—so
we can store them much more efficiently than my crude
layout here. Even so, quantum computing for a big
radiosity scene is probably a ways off. But it will come
someday.

Next time
The purpose of this column was to present the strange

realities of the quantum world without getting bogged
down in the notation and terminology of quantum
mechanics. Now that we have the ideas in place, next
time we’ll dig into the tools and mathematics that let us
describe and operate on quantum bits and registers.
They will let us build up to the design of quantum algo-
rithms, and we’ll see how to turn general descriptions
(such as the one I gave here for quantum radiosity) into
real algorithms. �
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