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Ilove pop-up cards. They’re fun to make and receive,
and it’s a pleasure to watch 3D shapes appear out of

nowhere, jump up off the page, and reach for the sky.
And as an output medium for 3D computer graphics,
they’re a perfect match; you get real 3D effects like per-
spective and parallax, and you don’t even need special
glasses or other hardware.

I’ve made and sent out original pop-up cards each
time I’ve moved to a new house over the last few years.
You can see some of these cards in Figure 1 (see p. 80).

Anyone who sets out to create their own pop-up cards
or books faces two tasks: design and construction. Pop-
up design is difficult enough that the really good pro-
fessionals in the field describe themselves as paper
engineers, and they deserve the title.

Creating a great pop-up presents both artistic and
technical challenges. Once you have an idea in mind,
you need to think about the best way to bring it about.
Each pop-up mechanism has its own pros and cons in
terms of design time, rigidity, durability, complexity,
and construction.

In my experience, coming up with a good idea is just
the first step. Typically you want the pieces to unfold and
stand on the card’s “stage” in just the right way, and this
is a delicate matter of just how the pieces are shaped and
where they’re glued down. If during the design stage you
build a piece and it doesn’t look quite right, there’s noth-
ing to do except cut a new piece with a slightly different
shape, glue it in, and see how that looks. This is a time-
consuming process of trial and error. When several pieces
interact, each change to one piece can have a ripple
effect, requiring changes to the others. Each iteration
can take a quarter-hour or more, even for a simple card.

Once the design looks right, you have to make sure
that the pieces of your card don’t jam up while opening
and closing. Getting all the pieces to move in the right
ways and not get bent or scrunched against each other
is a challenging task.

Once you’ve successfully designed the card, you have
to actually make it. This involves cutting out the pieces,
decorating them (or affixing decorations to them), glu-
ing them in place, and including any other necessary
mechanisms like grommets or string. Making one card
is kind of fun, but making 50 quickly becomes tedious.

Each time I’ve designed and sent out one of my pop-
up cards I’ve wished I had some kind of tool to help me
design the cards and some assistants to help construct

them. I can’t hire the assistants, but I decided to finally
go ahead and make the tool in the form of a pop-up
design assistant. In this column and the next I’ll talk
about the issues involved in designing and writing a pop-
up design assistant.

My goal in creating my assistant wasn’t to create pop-
up cards for viewing on the computer. That might be
fun, but it seems to miss the point, which is the tactile
pleasure in opening the card and the delight of feeling
it open. The idea is to make it easier to design wonder-
ful cards, which we can then construct and share in the
real world.

In this column I’ll talk about how pop-up cards work.
(Please see the sidebar—“A Bit of History”—to see how
pop-up cards evolved.) It may surprise you to discover
that nearly all pop-up cards have only a few basic mech-
anisms behind them, although they’re often combined
in unexpected ways. I’ll also cover some of the basic
geometry behind the most fundamental form of pop up.
This will set the stage for writing the program, which I’ll
discuss next time.

Basic pop-up mechanisms
The best way to learn about pop-up books is to study

some great ones: buy great pop-up books and careful-
ly disassemble them, learning from the best paper engi-
neers by studying their constructions.

There are a few good books on designing pop-ups (see
the “Further Reading” sidebar). There are easily dozens
of techniques—I reviewed my own work and counted
at least 3 dozen different kinds of mechanisms. That’s a
lot. The good news is that most of these techniques are
based on just a handful of basic ideas. Think of pop-ups
like a guitar. There are only so many ways to pluck and
strum the strings and rap on the body of the instrument,
yet great guitarists can create a tremendous range of
personally expressive and distinctive styles.

In this column, I’ll limit my attention to cards based on
stiff sheets of paper, so I’m ruling out bending and curl-
ing as deliberate design elements.

It’s important to keep the complexity of the card
under control. I know from personal experience that the
complexity of a card has a huge impact on how long it
takes to build. Remember that each cut and fold will
have to be repeated for each card. Many cards have mul-
tiple pieces, so it’s not unusual to spend an hour per card
for even the simplest pop-ups. It’s easy to design a card



that would take an afternoon to
build. If you’re making only one or
two (like a special birthday card), this can be a fun week-
end or evening project, and the extra complexity can be
fun for you and the receiver alike. If you’re making lots
of cards, then getting the most out of simple techniques
becomes essential.

90-degree mechanisms
The single-slit mechanism is part of the class of 90-

degree techniques. That means that they’re at their most

effective when the card is open to a right angle. When
the card is fully closed, of course, there’s nothing to see,
and when it’s fully open, these mechanisms retreat into
the plane of the card itself.

In the single-slit method, we fold the card and make
a single cut. Typically we also make a single corre-
sponding fold from the cut’s edge to the card’s central
fold. Then we open the card partly, push the cut-and-
folded section forward until it snaps into the forward
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1 Some of my
own pop-up
cards announc-
ing recent
changes of
address. (a) The
blank, or
mechanical, for
a multilevel
card. The three
V-folds repre-
sent mountains,
and the curvy
path that passes
through them
was the road I
drove across the
country. The
road pulls into
place by the V-
folds’ motion.
The final ver-
sion of the card
had artwork on
all the pieces.
(b) Opening
this card causes
the envelope to
tilt out of the
mailbox and the
red flag to go
up. (c) This is a
no-cut popup
that has just
been opened.
(d) The popup
of Figure 1c as it
opens. (e) The
final version of
Figure 1c,
before the
placement of
the new contact
information in
the lower right.

(a)

(b)

(c)

(d)

(e)

A Bit of History
Today we have a great variety of pop-up and moving books to

enjoy. This wasn’t always the case, of course. The history of pop-up
books blends together commerce, innovation, book publishing,
personal creativity, and even world events. Movable books weren’t
originally meant for children. In fact, it wasn’t until the 1700s that
there was any serious trade in children’s literature. Before that, all
books were for adults and usually serious in subject matter.

What is perhaps the first movable book seems to predate even
traditional printed books. In Majorca, Spain, a Catalan mystic named
Ramon Llull (1235–1316) drew a book that represented his mystical
philosophy using a set of differently sized revolving disks, or volvelles.
He divided up the world into several categories. Within each category
he identified entities as either superior or inferior. Some of Llull’s
categories included things and ideas, substances, adjectives and verbs,
and knowledge and actions. He divided each disk into sectors (like pie
wedges) and assigned one theme to each sector. The disks were then
cut out and stacked up, so that you need only turn the wheels to
understand nature and thus also predict the future.

Volvelles were particularly used for astrology. A Latin manuscript
uses volvelles to describe the motion of the planets over an almost
400-year period, from 1428 to 1808. The first use of volvelles in a
printed book was The Calendarium by Regiomontanus in 1474. This
wasn’t really a movable book in today’s terms, because you had to
cut the disks out and assemble them.

Movable disks were also used for mathematics. In 1551, Johannes
Schoner—a Nurenberg professor—published a calculator in
movable-disk form in Opera Mathematica.

Although the volvelle was popular, as early as the 1300s people
were also using flap techniques for mechanical books. These were
called turn-up or lift-the-flap books. They were used in many different
fields, but perhaps nowhere as much as in anatomy, because you
could simulate a dissection simply by raising successive layers. One of
the most famous examples of an anatomical movable book is Andreas
Vesalius’ De Humani Corporis Fabrica Librorum Epitome, printed in Basel
in 1543. The book presents the chest, abdomen, and viscera through
seven highly detailed, superimposed layers hinged at the neck.

All of these books were handmade. Perhaps the first printed
movable book was Cosmographia Petri Apiani, an astrological book
published in 1564.

In the 1700s the economics of printing changed, and gave birth to
a new class of literature: children’s books. Most of these books told
well-known children’s stories and fables that presumably everyone
already knew. The value of the books was that children could read
them for themselves when their parents weren’t there. Movable
devices made them even more appealing.

In 1765, the London book publisher Robert Sayer created a series
of children’s books he called metamorphoses. Sayer took a single large
sheet and folded it to create four panels, each of which could be
opened to reveal a different scene or bit of verse. Several of the books



position, and we’ve created a pop-up!
Figure 2a (on p. 83) shows a paper model of the most

basic single-slit popup: the right-angle single slit with a
fold to the crease. Basically all that’s happening here is
that segment of the card is bending away from the fold
rather than along it.

Despite its simplicity, this mechanism contains most
of what we need to know about the geometry of pop-up
cards. It also has a lot of flexibility, as Figures 2b through

2d show (technically Figure 2e is a double-slit design,
but the idea is the same).

Before we dig into the geometry, though, we should
make sure that it’s a reasonable course of action. I inves-
tigated two approaches to pop-up geometry: constraint
systems and explicit modeling.

A constraint system is a general-purpose program that
finds values for a set of variables, so that those values
satisfy a certain list of requirements, or constraints. For
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featured a character known as Harlequin from pantomime
theater, so the books also came to be known as
harlequinades, or sometimes just turn-up books.

In the 1860s, a London publisher named Dean and Sons
became the first to devote itself entirely to what was now
called the field of children’s toy books. Dean and Sons created
books based on the popular accordion, or peep-show style. The
idea was that many layers were stacked one behind the other.
The child opened the book by pulling the layers apart and
setting them up on a table. A ribbon connected the layers—it
ran through each one and emerged from the rearmost layer.
By pulling on this ribbon, the structures in each layer were
pulled out and into position. Then the child peered through a
hole in the front cover to view the newly created multiplane
diorama. From the 1860s to about 1900, Dean and Sons
produced about 50 toy books based on this principle. Dean
and Sons also developed a crude technique for dissolving one
picture to another using a low-resolution Venetian blind effect
(or jalousie).

By this time high-quality toy books had become a popular
luxury item for the children of rich Europeans and Americans.
In 1891, a German publisher named Ernest Nister started
designing new mechanical books in his Nuremberg studio
and printing them in Bavaria, where costs were low and
quality was high. Nister refined the Venetian blind effect and
extended it to a circular version that he used in a book called
Magic Windows. Because he could afford to charge high
prices, Nister was able to make high-quality books, and
became the best-known publisher of movable children’s books
by the turn of the century. Another of Nister’s innovations was
that his books didn’t require a ribbon. The illustrations stood
up automatically when children turned the pages.

Although Nister was the best-known publisher of movable
books for children, a contemporary of his named Lothar
Meggendorfer was setting a new standard for complexity and
ingenuity. Meggendorfer was a mechanical wizard who
created tiny metal rivets out of tightly wound thin copper
wire. He embedded these rivets inside double-paned pages,
and connected them on the outside to colorful, die-cut
figures. Simply by pulling on a single tab, the reader caused
the figures to move in elaborate ways in many different
directions at once. Some of the actions were even staged to
occur in time-delayed sequences as the wire uncoiled from
one rivet to the next. Meggendorfer’s books were widely
praised, as much for their humorous visuals and verses as for
their innovation and complexity. Even today, Meggendorfer’s
works are considered some of the finest movable books ever
made. His book The Circus has been described as one of the
most sought-after books of the 19th century. Between 1878
and 1910 Meggendorfer wrote and designed more than 300

complex, funny, and innovative mechanical books.
World War I put an end to what is now considered the

Golden Age of mechanical books.
After the war, the British publisher Louis “The Wizard”

Giraud revived movable books. From 1929 to 1949, he
produced 16 annual books named the Daily Express
Children’s Annual, as well as several books called the Bookano
Stories. These were called dimensional books because they
were mostly about depth and perspective, rather than
moving parts. He also called them living models because he
designed them to be viewed from several different
directions—like today’s pop-up books—rather than through
a pinhole or from just one point.

Giraud’s books delivered two other innovations. First, they
were the first to lift by themselves when the book was
opened 180 degrees. Second, the action sometimes
continued even after the book was open. For example, in
one particularly clever construction, opening the pages
reveals a clown swinging on a trapeze. Even after the book is
completely open, the clown continues to swing back and
forth. Although uncredited, it appears that Theodore Brown,
an inventor who also worked on motion pictures, was the
paper engineer who constructed these surprises.

In 1932, the term pop-up first appeared. The American
publisher Blue Ribbon Publishing of New York created a line
of illustrated Disney storybooks created by the Ohio artist
Harold Lentz, which they called pop-up books.

The economics of children’s book publishing and
mechanical book construction changed for the better in the
1960s. Julian Wehr created a series of movable books
featuring colorful, articulated people that moved in response
to pulling a tab. At the same time, Czechoslovakian artist
Viotech Kubasta created dozens of popular pop-up books
based on fairy tales.

Today, many English-language books are designed in
Europe and America, but almost all are printed and
constructed in Columbia, Mexico, and Singapore, where the
tedious and painstaking cutting and assembly steps are less
expensive.

Publisher Waldo Hunt has estimated that from 1850 to
1965 a total of less than 10 million pop-up books were
produced in the entire world (http://www.intervisualbooks.
com). Today, up to 25 million mechanical books are published
annually, with 200 to 300 new titles appearing in English
every year. Many chain bookstores now have an entire section
devoted to pop-up and movable children’s books.

Pop-up and movable books have also become popular for
adults again. Publishers are discovering that they’re a great
way to show complicated spatial relationships, as well as
surprise and entertain adult readers.



example, given variables A, B, and C, we might require
A > B, or A = B, or A + B > C.

Constraint systems are flexible tools for solving com-
plex problems. But they have three big drawbacks for
this application: they are typically large and difficult to
write and debug, they are notoriously sensitive to numer-
ical instability, and they can get struck while searching
for a solution and end up with no solution at all.

The simpler alternative I followed was to write spe-
cial-purpose code to explicitly calculate the pop-up cards’
geometry. This approach has a few things going for it:
the geometry is relatively straightforward, so the code
is easy to write and debug, it’s fast, and it’s stable (it just
calculates the proper answer right away).

One downside of writing the explicit geometry in the
code is that it limits designers to using mechanisms that

have already been prepared. I think this is a reasonable
limitation, since there seem to be relatively few mecha-
nisms in general use. If someone cooks up something
surprisingly new, then it can be added to the library.

Let’s look at the geometry of a single-slit pop up. Figure
3 shows the essential geometry behind all single-slit
designs. We begin with a card, or backing plane. Point A
is on the central fold, and points C and D lie at equal dis-
tances from the fold along a line perpendicular to it. We
score the card along lines AD and AC, and cut along CD.

Before we make the cut, the line CD crosses the fold
at point E. After the cut, I distinguish point E as that spot
on the card where the cut crosses the fold, and point B
as that point on the paper at the end of the folded seg-
ment. When the card is flat, points B and E are theoret-
ically coincident (in practice, of course, B will be slightly
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Further Reading
There are a few books on paper engineering that should be

in the library of anyone who’s thinking of getting involved in
the field. A terrific listing of all the essential mechanisms—
complete with working examples—is in David A. Carter’s and
James Diaz’s The Elements of Pop-Up (Simon & Schuster,
1999). Another book offers fewer mechanisms, but gives
more detail on each one, including some preprinted pages
for you to cut out and fold. This book is Paper Engineering by
Mark Hiner (Tarquin Publications, 1985). Another great
survey of the essentials, with dozens of suggested projects, is
in The Pop-up Book by Paul Jackson (Henry Holt, 1993).

Everyone has their favorite pop-up books. Like any other
kind of book, what one person loves can leave another
bewildered. But here are some pop-up books that I believe
most people will find entertaining, or at least interesting.
These are by no means exhaustive lists, nor do they include
all my favorites—that would take pages. Rather, they’re just
good jumping-off places into the literature.

Some great pop-up books for children include Robot by
Jan Pienkowski, paper engineering by James Roger Diaz, Tor
Lokvig, and Marcin Stajewski (Delacorte Press, 1981);
Haunted House by Jan Pienkowski, paper engineering by Tor
Lokvig (Dutton, 1979); Alice’s Adventures in Wonderland by
Lewis Carroll, illustrated by Jenny Thorne, paper engineering
by James Roger Diaz (Delacorte Press, 1980); and Monster
Island illustrated by Ron Van der Meer, paper engineering by
Tor Lokvig and John Strejan (Hefty Publishing, 1981).

Some artists do both the illustrations and paper
engineering for their books. Some great examples include
Sam’s Pizza by David Pelham (Dutton, 1996), The Movable
Mother Goose by Robert Sabuda (Little Simon, 1999), Bed
Bugs: A Pop-up Bedtime Book by David A. Carter (Little
Simon, 1998), and Chuck Murphy’s One to Ten Pop-up
Surprises! by Chuck Murphy (Little Simon, 1995).

A couple of recent pop-ups for adults include The Human
Body by Jonathan Miller and David Pelham (Intervisual,
2000), and The Pop-up Book of Phobias by Gary Greenberg,
illustrated by Balvis Rubess, paper engineering by Matthew
Reinhart (Rob Weisbach, 1999).

Three library Web sites were invaluable to me in
compiling my history of pop-up books. Moving Tales: Paper
Engineering and Children’s Pop-Up Books is a record of the

Foyer exhibit in the State Library of Victoria in 1995 (avail-
able at http://www.vicnet.net.au/vicnet/book/popups/
popup. html). A short but very readable account appears in
the Rutgers University Web site A Concise History of Pop-up
and Movable Books by Ann Montanaro (http://www.
libraries.rutgers.edu/rulib/spcol/montanar/p-intro.htm).

The University of North Texas has two great sites that
contain a ton of information. But even better, they contain
many photographs of mechanical books through history.
They show animated versions of books being worked and
even provide videos of some books being opened. They
appear at Pop-up and Movable Books: A Tour Through Their
History (http://www.library.unt.edu/rarebooks/exhibits/
popup2/default.htm) and The Great Menagerie: The
Wonderful World of Pop-Up and Movable Books, 1911-1996
(http://www.library.unt.edu/rarebooks/exhibits/popup/
main.htm).

If you’re keen to look more closely at constraint systems,
a good place to get started is the book Solving Geometric
Constraint Systems by Glenn A. Kramer (MIT Press, 1992).

You can find out a lot more about the radical axis and
other aspects of circular geometry in Dan Pedoe’s Geometry:
A Comprehensive Course (Dover Publications, 1970).

Some of the material in this column was carried out while
I worked at Microsoft Research. That work appears in my
technical report, Interactive Pop-up Card Design (Microsoft
Research Technical Report MSR-TR-98-03, January 1998,
http://research.microsoft.com/scripts/pubs/view.asp?TR_ID
=MSR-TR-98-03), and is covered by patent 6,311,142.

I’m not the first person to have his hand at bringing
together computers and pop ups. You can read about a
rather different approach in the article “Mathematical
Modelling and Simulation of Pop-Up Books,” by Y.T. Lee, B.
Tor, and E. L. Soo (Computers & Graphics, vol. 20, no. 1,
1996, pp. 21–31). Another article on paper manipulation
that is relevant to pop-up techniques is “Bending and
Creasing Virtual Paper,” by Yannick L. Kergosien, Hironoba
Gotoda, and Tosiyasu L. Kunii (IEEE Computer Graphics and
Applications, vol. 14, no. 1, Jan. 1994, pp. 40-48). A great
reference on paper and its geometric properties is
“Curvature and Creases: A Primer on Paper,” by David A.
Huffman (IEEE Transactions on Computing, vol. C-25, no. 10,
Oct. 1976, pp. 1010-1019).



closer to A). As the card folds, point B will move in a
direction opposite to that of point E, and that’s what
makes the pop-up pop.

Let’s label the right side of the card as plane π2 and
the left as π1. I’ll call the angle formed between these
two planes ω, measured from π2 to π1, as in Figure 3. The
fold line itself is called LF. As I fold the card, triangle ABC
rises; I’ll call this plane π4. Similarly, triangle ABD is π3.

To make things easier, I’ll assume that the left half of
the card (plane π1) is held flat on the table and the right
plane (π2) is opened. This doesn’t limit our generality
in any way, but it makes it easier to label the points.
Points A, D, and E are all constant in this setup because
they lie in the unmoving plane π1. Points B and C do
move. I’ll label the position of these points for a given
angle ω as Bω and Cω, respectively, as in Figure 3.
Specifically, Bπ is the position of B when the card is fully
open, and B0 is the position of B when the card is fully
closed. Our goal is to find the position of Bω for an arbi-
trary value of ω.

Since LF refers to line AE, I’ll designate line ABω as Lω,
which I also call the central pop-up crease. I’ll call the two
edges AD and ACω the induced creases, since they appear
as a result of the pop-up action. This is a right-angle
mechanism, because it’s at its best when ω = π/2.

Finding Bω
When the card is open, point Bπ lies in the plane next

to point E. As the card unfolds (that is, we lift plane π2 by
rotating it around line LF), point Bω rises. In this situa-
tion, it’s easy to observe that Bω always travels in a circle
with the center at point A and radius AE, in the plane that
lies between π1 and π2. But a more general solution will
prove useful later when we consider more complex types
of cards.

To find the location of Bω for any value of ω, let’s start
with the things we know. We know the positions of
points A, D, and E since they’re fixed. We can easily find
point Cω since it’s just point C rotated around line LF by
−(π − ω). We also know that because the card is stiff, the
distances between points A, Bω, Cω, and D are constant.

The key insight is to think of the construction in terms
of spheres. Clearly point Bω always lies on the surface of
a sphere with center D and radius |DE|, since that dis-
tance never changes and the line pivots around point D.
Let’s call that sphere SD. Similarly, Bω lies on sphere SA

with center A and radius AE. Point Bω also lies on sphere
SC with center Cω and radius |DE| (since |Cω E| = |DE|).

Because point Bω lies on the surface of three different
spheres, if we could find all the
points of intersection of these three
spheres, we would know that Bω was
somewhere in that list.

Three different intersecting
spheres that aren’t degenerate (that
is, they don’t have a radius of zero,
and none are identical) intersect in
exactly two points. Of course, one or
more of the spheres could fail to
intersect with the others, but in our
case we know they do, since we’re
working from a physical construc-

tion. If our three spheres SA, SD, and SC, don’t intersect,
then our card has come apart!

I don’t know of a standard solution for the problem
of finding the intersection of three spheres, but I cooked
up one that is simple, stable, and easy to implement.

To begin with, remember that the implicit formula for
a sphere with center C and radius r says that all points P
on the sphere equal 0:

(Px − Cx)2 + (Py − Cy)2 + (Pz − Cz)2 − r2 = 0

So when we plug in Bω for P into each of the three sphere
equations, it will be zero for all of them.

Now imagine a plane through the centers of our three
spheres, as Figure 4 (next page) shows. I’ll call this πS.
Symmetry tells us that the intersection points of the three
spheres lie on a line that’s perpendicular to πS. We mark
the intersection point of that line with πS with a dot.
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2 The simplest popup: The single-slit
design. These are photographs of
paper models. (a) The canonical
single slit. (b) A different view of
Figure 2a. (c) A variant single-slit
design. (d) Another variant single-
slit design. (e) A double-slit design.

(a)

(b)

(c)

A

D

E

Cω

Bω

ω

π3
π4

π1 π2

(a) (b)

A

D
E
Bπ

LF
LF

Cπ

3 Basic geome-
try of the single-
slit mechanism.

(d)

(e)



The three spheres turn into circles in the plane πS.
When we plug the marked point into those three circle
equations, it will have the same value with respect to
them all (note that the value won’t be zero, since the
point doesn’t lie on the circles themselves).

Let’s pick any two of these two circles and call them U
and V:

U(x, y) = (Px − Ux)2 + (Py − Uy)2 − rU
2

V(x, y) = (Px − Vx)2 + (Py − Vy) 2 − rV
2

Now let’s look at the structure of all points P that have
the same value with respect to these two circles. That
is, we want to find all points where U(P) = V(P), or
equivalently, U(P) − V(P) = 0. I’ll write this difference of
two circles, expand their definitions, and collect like
terms:

0 = U(x, y) − V(x, y)
= (x − Ux)2 + (y − Uy)2 + Ur

2

− [(x − Vx)2 + (y − Vy)2 + Vr
2]

= x2 − 2Uxx + Ux
2 + y2 − 2Uyy + Uy

2 + Ur
2

− x2 + 2Vxx − Vx
2 − y2 + 2Vyy − Vy

2 − Vr
2

= 2x(Vx − Ux) + 2y(Vy − Uy) + U(0,0) − V(0,0)
= Ax + By + C

Recalling that Ax + By + C = 0 is the equation of a line,
we’ve just discovered that all points (x, y) that have the
same value with respect to both circles lie on a straight
line. This line is called the radical axis.

Now let’s look back at our three-circle problem, where
I’ll add in circle W. Figure 5 shows these three circles in
the general case, where they have different radii and
intersect. Circles U and V meet in two points, which I’ve

labeled PUV and QUV. Because both of these points have
the value 0 with respect to both circle equations, they
must lie on the radical axis of those two circles. In other
words, to find the radical axis for circles U and V we need
only find their intersection points PUV and QUV. I’ll call
this line LUV.

Similarly, I’ve labeled points PUW and QUW at the inter-
sections of circles U and W, and the same thing for cir-
cles V and W. These two pairs of points respectively
define the radical axes LUW and LVW.

Now since the circles intersect, LUV and LUW must meet.
We’ll call that point M. Since M is on the radical axis
between U and V, U(M) = V(M). And since M is on the
radical axis between U and W, U(M) = W(M). Thus 
V(M) = W(M), which means that M also lies on the rad-
ical axis LVW.

This little bit of reasoning proves that if three circles
are mutually intersecting, then their radical axes inter-
sect at the unique point M.

We’re halfway home now. Our next step is to locate
point M, given the three spheres. I do this by creating a
plane for each pair of spheres. The plane contains the
radical axis and is perpendicular to the plane that joins
their centers. So for example, the plane for spheres U
and V contains line LUV and comes out of the page in
Figure 5.

To find this plane, take a look at the geometry in Figure
5a. In this figure, we’re given the centers of circles C1 and
C2, their radii r1 and r2, and the distance d = C1 − C2. Of
course, this is all the same information as the center, radii,
and distances of the spheres. We want to find point J.

From triangle PJC1 we see that a = r1 cos α. To find cos
α we can use the law of cosines with C1PC2 to find

cos α = (d2 + r1
2 − r2

2)/(2r1d)

so

a = r1 cos α 
= (d2 + r1

2 − r2
2)/(2d)

Using these values for a and d, we
can find

Our plane passes through J with a
normal parallel to C2 − C1. Intersect-
ing any two of these planes gives us
the dashed line of Figure 4.

With this line in hand, we need
only intersect it with any of the
spheres to find the two points of
intersection, one each above and
below the plane πS. Which point do
we want? Refer to Figure 3. We want
the point that’s on the same side of
plane πS as point Cω, which we know.

And that point, finally, is Bω. This
may have sounded like a long road,
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4 Three mutually intersecting
spheres. The plane πS joins their
centers. The two intersection points
of the three spheres lie on the
dashed line that’s perpendicular to
the plane.
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PVW
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(a) (b)
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d

α
C1
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5 The geometry for finding the point of mutual intersection of three spheres. (a) Finding the
radical axis through points P and J for the two circles with centers C1 and C2, radii r1 and r2, and
distance d = |C1 − C2|. (b) Intersecting the three radical axes.



but most of it was setting up the situation and figuring
out what the geometry of the situation looked like. Now
that we have the solution, the code itself is pretty short.

If the circles of Figure 5 don’t mutually intersect, then
the radical axes are parallel and there’s no intersection
point. But this never holds in our situation. The most
extreme case is when the card is fully open or closed,
and the circles are tangent—they never fully separate.

Interactive math
Now that we can find Bω, we can draw the card for any

given value of the opening fold angle ω. Just find the
point Cω, then intersect the spheres to find Bω, and draw
the polygons.

Suppose that we don’t like the way the card looks.
Then we can simply grab Bω and move it around inter-
actively. There’s only one geometric limit the system
needs to enforce on the user: point Bω must lie on the
plane that’s halfway between π1 and π2 at any stage of
folding. We don’t even require that the corresponding
point E be on the card itself. There’s no reason not to let
the designer create a card that pokes up from the bot-
tom, or down from the top, as Figure 2 shows.

Finding Bω is the heart of my pop-up design assis-
tant. Figure 6 shows the results of using my program to
recreate the paper models of Figure 2. The routine is
short, based on the geometry we discussed. I’ll give
details on programming it in the next issue.

Asymmetric slits
An important variant of the single slit is the asym-

metric slit. Here the fold doesn’t follow the crease of the
backing card—it’s at an angle to it. This gives the design-
er more freedom to create slanted and forced-
perspective effects.

Figure 7 shows the essential geometry. Figure 7a is the
open card and Figure 7b shows it in the closed position.
In Figure 7a, the central pop-up crease ABπ forms an
angle β to the support crease AE. Although in action the
card looks generally like Figure 2b, the central pop-up
crease is rotated, creating an asymmetrical pair of trian-
gles on each side. In Figure 7a, we’re free to choose A, D,
and Cπ. We want to find Bπ that lets the card fold flat. In
terms of angles, we have ψ, γ, and δ and wish to find α.

In Figure 7, we can see that as the card folds, point Bπ

comes up out of the plane and eventually comes down

to rest at B0. This causes triangle ∆ADBπ to become
reflected, since Bω pulls it around AD. The motion of Bω

pulls along triangle ∆ABπCπ, and comes to rest at ∆ AB0C0

in an orientation equal to a rotation of γ around A.
Because ECπ is perpendicular to the folding axis AE,
point Cπ moves to C0 along line DE. This means that tri-
angle ∆AC0E is similar to triangle ∆ACπE.

To find α, we begin with ∆B0DC0 in Figure 7b and 7c,
giving 2ψ + (π − 2δ) + (π − 2φ) = π, or φ = ψ − δ + (π/2).

From ∆ADBπ in Figure 5a, write α + ψ + π − φ = π. With
the value we found for φ, this becomes α = (π/2) − δ.
From ∆AECπ we then find that δ = (π/2) − γ. By com-
bining these last two results, we find our goal: 
α = (π/2) − ((π/2)−γ) = γ.

This was a long road that ends with a simple conclu-
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6 The models of Figure 2 modeled
by my pop-up design assistant.
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7 Geometry of
the asymmetric
single-slit.



sion: to construct an asymmetric slit pop up that folds
flat, place Bπ in Figure 7a so that α = γ.

V-fold mechanisms
The V-fold mechanism creates a pair of free-standing

slanted planes when the card opens, as Figure 1a shows.
The V-fold is one of the hardest pieces to design using
paper and scissors, since you indirectly control how
much the plane leans back by changing the angle at the
base of the piece when it’s cut out. This angle is the V at
the bottom of Figure 8a.

Because a V-fold is a separate piece attached to the
card backing, it can rise out of the card plane when the
card is fully open, unlike the single slit. Thus the geom-
etry of the V-fold is based on the single slit, but allows
more flexibility in its design. Though Bω still locates the
central crease, there may be no paper at that point in
space. For example, the apex of the fold (point E in Figure
8) need not be included; the shaded tunnel region in
Figure 8b can be cut out of the card. Figure 8 also shows
the small flaps scored, bent back, and then glued to the
support planes.

Since V-folds don’t cut into the page, they may be
placed on any crease, which we then treat just like the
card’s crease for that mechanism. Figure 8c shows a cas-
caded pair of V-folds. The larger one uses the card fold
as its support crease, and creates ECω as one of its side
pop-up creases. The smaller V-fold uses ECω as its sup-
port crease. So opening the card pops up the big V-fold,
which then drives the smaller one to pop up as well.

The tabs of a V-fold must be carefully glued in the
right places or the card may not open or close fully.

Depending on the placement of the V-fold on the sup-
port planes, we can design it to fold either toward or
away from the reader. When the planes of the V-fold
become parallel to the support planes, all the folding
lines become parallel to one another. This configuration
is sometimes called a floating layer.

Figure 9a shows a computer-rendered V-fold. In
Figure 9b I show a second-generation V-fold raising from
the crease between the first V-fold and the card. Higher
generations of V-folds work just like their parents,
although they require a bit of care in programming to
keep track of all the points during the opening and clos-
ing of the card.

Next time
This completes our introduction to the basic history

and geometry of pop-up cards. Next time I’ll talk about
other mechanisms and some advanced topics, and also
describe some of the features and programming of my
pop-up design assistant. 
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9 Computer-
rendered V-
folds. (a) A
single fold
sitting atop a
backing card.
(b) A second
generation, or
cascaded, V-fold
in the process of
opening.

(a)

(a) (b) (c)

ED
Cω

Bω

8 V-fold mechanisms. (a) The basic
V-fold. (b) How it sits on the card. 
(c) A second-generation V-fold.

(b)


