Andrew
Glassner

1 Aphoto-
graph of the
wake behind a
moving boat.

88

Andrew Glassner’s Notebook

http://www.glassner.com

Duck!

hen ducks swim on a smooth deep lake, they cre-

ate a V-shaped ripple of waves behind them. Boats
and ships do the same thing (see Figure 1), as do human
swimmers. I saw a duck swimming across a glass-smooth
pond a few weeks ago, and I wondered what it might be
like if T could choreograph a flock of trained ducks to
swim as I wanted. Could the ducks be induced to make
interesting patterns out of their overlapping wakes?

Since I probably couldn’t get real ducks to obey my
instructions, I decided to build a flock of virtual ducks
and experiment with them. The only problem with this
scheme was that it required first finding a way to com-
pute the wake that a duck creates behind it as it swims.
Writing an accurate, general-purpose, fluid-flow simu-
lator is a difficult job. Happily, finding the wake created
by any object moving with constant speed in deep water
is much easier.

Finding a duck’s wake is of course just a special case
of the more general problem of the modeling and sim-
ulation of water. Computing water flow is nothing new
in either engineering or computer graphics. There have
been thousands of papers and hundreds of books writ-
ten on the simulation of water, many of which are intri-
cately detailed.

Water is very special stuff and has some surprising
properties. Hydraulics engineers describe water as a
nonviscous incompressible fluid that moves under the
influence of gravity. The important word for us in this
definition is incompressible.

Air is compressible. If you walk into a sealed room,
then your body will displace the air that was where your

July/August 2002

body now is. That air mixes with the other air in the
room, creating a slightly higher air pressure on your
skin. You can even compress a lot of air into a small space
and store it efficiently, which is why underwater divers
get so much time out of a single tank of air.

Water, by contrast, isn’t compressible. If you try to
walk into a closed room full of water, you won’t get in
the door. There’s nowhere for the water to go when your
body tries to push it out of the way.

This principle is illustrated by a famous (and proba-
bly apocryphal) story of the Greek philosopher
Archimedes of Syracuse (who lived around 240 BC).
The story begins with the king coming to Archimedes
with a problem. The king had purchased a new crown of
solid gold, but the king was suspicious and thought that
perhaps the artisans who made the crown had cheated
and simply melted a layer of gold leaf over a core of some
cheaper metal. He asked Archimedes to determine if the
crown really was made of nothing but solid gold, but
with the condition that Archimedes not damage or alter
the crown in any way. This seemed an impossible prob-
lem. Then one day Archimedes climbed into a bathtub,
causing the water to slosh over the sides. According to
legend, Archimedes suddenly saw how to solve his prob-
lem, and ran naked down the street shouting “Eureka!”

Archimedes’ insight was that the volume of water that
had spilled over the side of the tub was exactly equal to
the volume of his immersed body. In other words,
because water can’t be compressed, the volume of water
displaced by an object is equal to that object’s volume.
So Archimedes dunked the crown into a tub of water
and measured how much water spilled out. Then he
weighed the crown and divided the weight by the vol-
ume to get the crown’s average density. It turned out to
be the density of gold, so it meant that unless the arti-
sans had found a way to make another metal with the
same density as gold (which nobody knew how to do),
then the crown was indeed made of solid gold after all.

Drawing our inspiration from this legend, let’s push
around the water displaced by a swimming duck and
create the wave pattern that flows behind it.

Kelvin waves

To find a duck’s wake, I'll assume the duck is in a pool
of water that’s infinitely deep. This means that no waves
bounce off the bottom and come back up at us, and it also

(b)

2 (a) A Kelvin wave for y = 1. (b) Superimposed Kelvin
waves for several values of .

means that we don’t have to worry about where the water
goes when we push it downward. It just goes down, push-
ing down all the water below it as well. In real life, of
course, eventually that downward-moving water will hit
the bottom and then move to the sides. With this assump-
tion, it’s possible to start with a few basic equations of
fluid motion and related boundary conditions and find
an explicit formula for the wave’s shape propagating
behind the duck. I won’t provide this derivation here,
because it’s complicated and not very revealing. You can
find the details in chapter 2 of Water Waves and Ship
Hydrodynamics: An Introduction by R. Timman, A.J.
Hermans, and G.C. Hsiao (Delft University Press, 1985).

The bottom line is that we can find the wave by trac-
ing out a parametric curve, which I'll call K(y, u). The
curve K is given by two expressions, which give us its x
and y components. Each component of K is defined by
two parameters. The first, , is called the phase of the

0.4

0.2

-0.4

3 Finding the angle o that points to a Kelvin wave's
cusp.

wave. Basically this is a shape control that accomodates
the fact that the wave gets larger as time passes. The sec-
ond parameter, u, sweeps out the curve for a given value
of y. Here’s the definition of K:

Kx(u)z%(S cos u—cos 3u)

Ky(u)= %(sin u—sin 3u)

where -n/2<u<mn/2.

Sometimes K is called a phase wave. It’s also called a
Kelvin wave after the physicist Lord Kelvin (William
Thomson), who was the first to study this phenomenon
mathematically. You can think of y as a measure of how
long the wave has been expanding.

Figure 2a shows this curve for y = 1 behind a duck
swimming from left to right. In Figure 2b I've overlapped
several plots of K for different values of y.

Notice that the waves all lie in a cone behind the duck.
For some applications it’s useful to know the angle of
this cone, since everything outside of the cone is guar-
anteed to be unaffected by this particular duck. The half-
angle at the tip of this cone is called the Kelvin angle,
labeled o in Figure 3. To find the Kelvin angle, we can
determine the locations of the two points, or cusps, of
the phase wave.

These cusps appear where the derivatives of K, and
K, are both simultaneously zero with respect to the vari-
able u. These derivatives are

dKx -y . .
——=—-(-5 sinu+3 sin(3u
du 4 (G
dKy -y

——=—-(cosu+3 cos(3u

du 4 (B

IEEE Computer Graphics and Applications

89

Andrew Glassner’s Notebook

4 Plots of the
derivatives of a
Kelvin wave.
The dx/du s in
red, while dy/du
is in green. The
Kelvin angle is
where these are
both zero simul-
taneously.

5 (a) The
Kelvin functions
x(u) (red) and
y(u) (green) for
n/2<u<m/2.
(b) The Kelvin
angle is where
these functions
have zero slope.

20

(b)

and are plotted in Figure 4. It’s easy to confirm that these
functions are both zero at u=cos*(v2/3). If we plug this
value for u into the curve K above, we get a point at about
(-1.088,-0.385), as Figure 3 shows. The angle between
the X-axis and the line from the origin to this is about
19.5 degrees.

I plotted Ky(1, u) and K, (1, u) in Figure 5a, and
marked the locations of u=19.5 degrees and u=-19.5
degrees in Figure 5b. Reassuringly, both graphs are flat
at those points.

We found the Kelvin angle’s size with an algebraic
computation. It turns out that there’s also a nice geo-
metric argument that yields the same result. I like geo-
metric approaches in general for their intuitive appeal,
but this one also helps us understand something about
water waves in the process.

To start with an analogy, think of an airplane flying

July/August 2002

(a)

ct

(b)

6 (a) Forming a supersonic boom. Each of the circles is
an expanding pulse of air from a point on the plane’s
path. (b) Finding the angle at the apex of a cone.

left to right with constant velocity v, as Figure 6a illus-
trates. We'll just look at a 2D, simplified version of the
complex 3D waves created by the airplane.

Imagine that as the plane flies, at every point it cre-
ates a whole bunch of circular waves of different fre-
quencies, all radiating away at once. I drew these as
circles in Figure 6a. An interesting property of sound
waves in air is that they all travel at the same speed. That
is, the speed of sound doesn’t depend on wavelength.
Although the plane makes disturbances of many differ-
ent frequencies, they all radiate away from the point at
the same speed.

In Figure 6a the airplane is going at supersonic speed.
That means the plane is moving faster than the waves are
expanding. What’s the angle of the cone that contains
these waves? Looking closely at Figure 6a we can see that
all the circles are tangent to the cone that contains them.
In Figure 6b I picked any circle. The circle was created
when the plane was at point A, but the plane is now at
point B. If the plane is flying with velocity v and it took t
seconds to get from A to B, the distance |AB| =vt. If we
write ¢ for the speed of sound, then the radius of the cir-
cleisct. Let’s call the point of tangency C. Now we have a
right triangle ACB where |AB| =vt, and |AC| =ct, and
we want to find angle o at point B. Since sin o =
|AC|/|AB| =ct/vt, then o.=sin"" (c/v).

Now let’s return to the water and more duck-like
speeds. The situation will be somewhat different than
the airplane because water waves of different wave-
lengths travel at different speeds.

(a)

|

| “

il

|

| ’

1 W\M W.Vn”n\,vﬂv WAVAVJ\VA'VAV

/

(b)

(9

7 Several sine waves of almost the same frequency add
up to make clear packets. (a) sin(x) for 0 < x < 60m.

(b) Sine waves from sin(x) to sin(1.5x) in steps of 0.1x.
() sin(x) + sin(1.1x) + sin(1.2x) + sin(1.3x) + sin(1.4x) +
sin(1.5x).

Thinking now of a duck traveling from A to B, at each
point in its journey the duck creates a whole bunch of
different waves at slightly different wavelengths. When
many different waves of almost the same wavelength
combine with each other, the result is that they tend to
cancel out in some places and reinforce in other places.
Figure 7 shows this phenomenon for six sine waves of
only slightly different frequencies. In Figure 7a I show a
sine wave from 0 to 60n. In Figure 7b, I plotted that wave
as well as five more of slightly higher frequencies, and it
looks like a mess. In Figure 7c, I added up the six waves
from Figure 7b, and a surprising structure emerges. The
waves have combined to create a series of packets.

This is what happens to the water waves created by
our duck. At each point the duck creates a variety of
waves of slightly different wavelengths, but rather than
disturbing all the water uniformly, they create easily dis-

(e) (f

8 A geometric construction for the Kelvin angle. (a) A few different waves

radiated from point A. (b) The angle each forms at point B, with a point of

tangency given by a point C;. (c) The points of Figure 8b lie on a semicircle.
(d) The waves from A move at the group velocity, which is half of the phase
velocity, so they only get halfway, to points marked D;. (e) The points D; lie

on a semicircle. (f) Finding the angle of the semicircle in Figure 8e.

cerned packets, as in Figure 7. If you watch a fine-grain
water wave start behind a duck, you can see it quickly
move out until it reaches an existing packet, where it
combines with the packet for a while and then emerges
from the other side to dissipate in the open water.

How fast does the packet move? Individual waves
move at a speed given by the phase velocity. But the pack-
et moves at the group velocity, which in deep water is
exactly half the phase velocity.

As arough analogy, think of a highway where an acci-
dent has recently been cleared. There’s still a clump of
slowly moving cars near the scene of where the prob-
lem was. New, fast-moving cars arrive at the tail of the
pack and are forced to slow down, while cars near the
front can regain their speed and drive away. Thus,
there’s a slow-moving clump of cars traveling up the
highway, constantly being refreshed with new cars and
losing old cars. The car membership in the blob con-
stantly changes, and the cluster moves more slowly than
any of its components.

Let’s see how we can use this information to find the
Kelvin angle. In Figure 8a, I drew a number of circular
waves as radiated from point A (the duck is now at point
B). If we imagine that each one of these waves defines
acone behind B, then we can draw a line from B tangent
to each circle, creating a point C; for each wavelength,
as in Figure 8b. Figure 8b shows four different waves
and thus four different tangency points. In reality,

IEEE Computer Graphics and Applications 91

field for a
series of Kelvin
waves, where
the amplitude
varies with the
sine of the
phase.

(b) Adding
damping to
Figure 9a.

92

there’s a smooth distribution of these waves from short
to long.

Because every line from B to one of A’s circles is always
tangent to the circle at the corresponding point C;, the
angle formed at each of these points C; is always a right
angle. You may remember the geometric fact that all
right triangles built above a common hypotenuse end up
with their third vertex on a shared circle that uses that
hypotenuse as a diameter. Figure 8cillustrates this point.

These points C; are the points that enclose the indi-
vidual waves. But remember that these waves combine
to form a packet, as in Figure 7. So what we really want
to find is the cone that encloses the packet, not the indi-
vidual wave crests. Remember from above that the
group velocity in deep water is exactly half of the phase
velocity. Since every line AC; gives us the distance to a
wave crest, if we mark a point halfway between A and
C; we’ve found the packet’s location. I marked these
points in Figure 8d as D;. So now our goal is to find the
cone from B that encloses all the points D;.

If you enjoy geometry problems, you might want to
stop reading here and work out the shape formed by the
points D;.

Figure 8e shows the answer. It’s a new circle that has
aradius of |AB|/4, and is located 1/4 of the way from
Ato B. All of the wave packets generated at point A live
inside this circle. Thus, to find the angle of the wake
behind the duck when it’s at B we need only draw a line
from B that’s tangent to this circle and read off the angle
at B. Figure 8f shows the setup. If we write r= |AB|/4,
then o = sin(r/3r) = sin(1/3). If we evaulate
o = sin"!(1/3), we get a Kelvin angle of about 19.5
degrees, just as we found before. It’s always a good day
when we can reach the same result by two entirely dif-
ferent approaches!

In summary, all the Kelvin waves created by any
object moving with constant speed in deep water lie
within a cone with a half-angle given by the Kelvin angle
of about 19.5 degrees.

Wake up!

Now that we know how to create Kelvin waves K(t),
the only question left is how to use them to make a trail
behind a swimming duck. The easiest way is to let them
grow as the duck moves. But as we can see from Figure
2, just superimposing the waves on each other will even-
tually lead to a black blob, which of course isn’t what we
see in nature.

July/August 2002

What we want to do is have the
waves go up and down, as they do in
the real world. As time goes by, any
given Kelvin wave undergoes three
changes. First, it gets larger. This is
automatically handled by the phase
variable y. If we plot K(ty, u) where
t is time, then the wave naturally
grows with t. Second, the wave goes
up and down, or oscillates. We can
model that easily by setting the
amplitude A of the wave to
A = cos(ct), where c is the speed of
the Kelvin wave.

If we draw a great many waves with these rules and
let them accumulate, the result is Figure 9a, where here
I computed the waves for a duck swimming left to right.

In this and all similar figures in this column, the waves
are represented as a height plot. We're looking straight
down on the water. White points are closest to us (that
is, they correspond to crests) and black points are far-
thest (corresponding to valleys). Neutral gray is the
undisturbed water level.

The third change to Kelvin waves as they expand is
that they lose energy. That is, the amplitude diminish-
es with time. I use an exponential function to control
this, setting A’=Ae"®” for a user-defined constant b.
The result of incorporating this third component gives
us the wake of Figure 9b.

To create Figure 9b, I first created in memory a grid of
floating-point values and initialized them all to 0. This
is the sampled wave pattern into which all the Kelvin
waves will be added (let’s call it W).

Now I start at point B (I found it easier to move from
the end to the start) and draw a Kelvin wave with a
phase of y = 0 and amplitude of A= 1. Using the equa-
tions K, and K, I step u in many small pieces from —n/2
to /2. The number of steps is user-controlled; a small-
er number results in coarser patterns but faster running
time. Typically I use a small number of steps for u while
working on my patterns and then crank it up high for
the final images. For each value of u I get a floating-point
location (x,y). I then find the four nearest pixels in W to
that point and add to them the appropriately weighted
values of A using bilinear interpolation.

When I've finished the u sweep, I then take a small
step backwards on the path toward A, creating a new
point P. As with the control of u, the number of steps
taken from B to A is user-defined. Again, more steps
result in smoother images. First I calculate the path
length from P to B. If AB is a straight line, this is just the
distance |PB|. Butif the duck is swimming on a curved
path, I need to find the distance covered by the duck
along the path from P to B. Sometimes I can find this
analytically—I have special-purpose code for simple
pathslike straight lines and circular arcs. For more gen-
eral curves, I have to compute an approximate arc
length by taking many little steps along the path from
P to B and adding up all the little straight lines. Of
course, this is the reason that I work backwards. Each
time I compute a new point P, I don’t need to compute
the entire distance |PB]|, but just the shorter distance

to the previous point P and then add that in to the pre-
vious distance.

Given a point P and its distance along the path to B, I
use the duck’s speed to find the time ¢ it took the duck to
reach B from P. Using this value of t, I calculate the phase
y and the amplitude A. Then I walk though the values
of u again, finding points along the way, and adding in
the value A to those points. Then I take another step
toward A and repeat the process. When I'm done with all
the paths for all the ducks in the scene, I scan the grid W
and scale all the values within it to the range [0,1]. Then
I multiply each pixel by 255 and write it out as a
grayscale image.

To make the images in Figure 9 used a grid that was
512 x 512 elements large. If we call this grid 512 units
on a side, I plotted from 50 to 100 values of y for every
unit of length of the path on the grid. I typically took
500 to 1,000 steps in u to generate the wave for each
value of y.

This is a pretty good rough-and-ready simulation, but
it has one big problem. As we walk along K in equal steps
of u, the points we generate aren’t equally spaced along
the curve. Figure 10 shows 100 points created by chop-
ping the u interval [-n/2, /2] into 100 equal steps and
then plotting the resulting points. Obviously, they tend
to bunch up near the cusps.

This can create some unpleasant artifacts at the edges
of the duck’s path. The value of plotting a great many K
waves is that they all add up to make a smooth field. But
if there are pixels that only get written to once or twice,
they don’t have a chance to combine with the other
waves. If these pixels happen to have a large amplitude,
when Isearch the image for the largest and smallest val-
ues prior to the scaling step, these can stand out. The
result is that most of the wake is neutral gray, with a
smattering of white and black pixels along the edges.

To solve this, I precede the scaling step with a smooth-
ing step. First [create a copy of W in a new grid called
W2. Then I look through all the pixels in W that have
been written to and compare each pixel’s value to the
average of its four immediate neighbors. If the differ-
ence between the pixel and its neighbors is above a
threshold, then I replace that pixel’s value in W2 with
the average of its four neighbors in W. When I'm done
with this pass, I copy W2 back to W and throw W2 away.
Now that the numerical rogues have been tamed, I scale
the data and write it out as a grayscale file, as before.

Figure 11 shows a duck on rather calm water. The
wake pattern behind the duck is Figure 9b. The only
“real” thing in this image is the photo of the shoreline in
the background that I took of Green Lake in Seattle.
Everything else is synthetic.

Throwing a curve

I've described how I plot a path from A to B, but what
if the path isn’t a straight line? I specify a duck’s overall
journey by stitching together a series of short paths. My
palette of available paths contains line segments, circu-
lar arcs, spirals, Bezier curves, and cubic splines.

We saw an example of a straight-line wake in Figure
9b. Figure 12a (next page) shows the pattern caused by
a cubic spline, where I've exaggerated the waves’ heights

10 The range -n/2 < u<n/2 cut into 100 equally-
spaced points and plugged into K. Note that the points
aren’t equally-spaced along the path of K.

11 A synthetic image using the wave pattern of Figure 3b.

so you can see the beautiful patterns. Figure 12b shows
a proper result. In Figure 12c, I highlighted the path
taken by the slowly swimming duck in red. Here I've kept
the damping factor to a low value so that you can see
the interesting shapes created by the Kelvin waves.
Notice that the back waves are huge compared to those
in the front because of the additional amount of time
they’ve had to spread. Figure 12d shows this pattern in
3D behind our swimming duck.

Ishow another spline in grayscale in Figure 13a (next
page), and in 3D in Figure 13b. I turned the damping
back on here so that the oldest waves have just about
(but not quite) died out.

The only trick to stitching together these different seg-
ments is to ensure that the end phase of one segment of

IEEE Computer Graphics and Applications

93

Andrew Glass tebook

the path matches the start phase of
the next. This is easy to manage by
working backwards along the seg-
ments. The phase y just keeps grow-
ing with your accumulating,
approximate arc length and every-
thing goes together smoothly.

Water ballet

Now that we can create a wake pat-
tern, let’s put several swimmers
together and see how the patterns
interact.

Sail away

It appears the local radio-
controlled model galleon club has
been practicing their close-forma-
tion steering skills. Figure 14a shows
the wake pattern created by six
galleons traveling in alternating
directions. They’re trying to steer a
straight course, but the wind is
pushing them around a little. Figure
14b shows the wake in 3D.

Because these pilots are so good,
() they decided to try another go at

closer quarters. In Figure 15a we can

12 (a) A wave pattern for a duck swimming on a twisty path. The heights are exaggerated for see the waves created when the ships
legibility. (b) Including damping into Figure 12a. (c) The duck’s path highlighted in red. sail much closer to one another—the
(d) A synthetic image using the wave pattern of Figure 8b.

13 (a) Awave
pattern for a
duck swimming
on a twisty
path. (b) A
synthetic image
using the wave
pattern of
Figure 8a.

(b)

14 (a) Awave
pattern for six
boats on rough-
ly parallel paths.
(b) A synthetic
image using the
wave pattern of
Figure 14a.

94 July/August 2002

i

N WA~
NFANNAN/NN NN
78\ YA N\ N/ \Y/

(b)

wake patterns combine in beautiful ways. Figure 15b
shows the result out on the water.

Rubber ducks unite

Everyone loves a rubber ducky in the bathtub. But it
turns out that rubber ducks are social creatures and enjoy
one another’s company. In fact, rubber ducks like to swim
in the same sort of V-shaped formations as other ducks.

In Figure 16a we can see the wake pattern created by
aphalanx of seven rubber ducks swimming alongin a V.
Each duck is swimming outside of the Kelvin wave creat-
ed by the duck ahead of it, so it’s easy to see the starting
point of each duck’s wake. Figure 16b shows the results
as they swim together creating the wake in Figure 16a.

After a while the ducks move into closer formation.
Each duck swims right on the border of the Kelvin

15 (a) Awave
pattern for six
boats on rough-
ly parallel paths.
(b) A synthetic
image using the
wave pattern of
Figure 15a.

16 (a) Awave
pattern for a V-
shaped phalanx
of seven ducks.
Each is swim-
ming outside
the wake of the
duck in front.
(b) A synthetic
image using the
wave pattern of
Figure 16a.

17 (a) Awave
pattern for a V-
shaped phalanx
of seven ducks.
Each is swim-
ming just on the
border of the
wake of the
duck in front.
(b) A synthetic
image using the
wave pattern of
Figure 17a.

wave created by the lead duck. Because all Kelvin
waves share the same angle, the waves created by
these ducks share the same outer border. Figure 17a
shows the wake pattern, and Figure 17b shows how it
looks out on the lake.

Then the ducks move in closer. When each duck starts
to swim within the Kelvin wave of the duck ahead, they
create the wake pattern of Figure 18a (next page) . Out
on the water, this shows up as Figure 18b.

Up periscope
The recruiting poster exhorted young men to join
the submariners and sail the seven underwater seas.
What they didn’t realize was that they would have
to go on extensive training exercises out at the lake.
Their first exercise involved chasing each other in a

IEEE Computer Graphics and Applications

95

20 (a) A wave pattern for five
submarines chasing each other in a
circle. They’ve swum further than in
Figure 19 and each one is now in
the wake of the one in front. (b) A
synthetic image using the wave
pattern of Figure 20a.

96

18 (a) Awave
pattern for a V-
shaped phalanx

of seven ducks. _\;; N

Each is swim-
ming inside the

NN A
border of the \\\\ A
N\Wene//
wake of the NN\
duck in front. N/
N\waw//
(b) A synthetic _.A.,///
image using the N/
wave pattern of v

Figure 18a.

19 (a) Awave
pattern for five
submarines
chasing each
other in a circle.
Each one is
pretty far
behind the one
in front of it.
(b) A synthetic
image using the
wave pattern of
Figure 19a.

circle. Figure 19a shows the wake pattern created by the
periscopes of five subs following each other. You can see
that they just recently brought up their periscopes.
Figure 19b shows this training exercise in progress.

After some time elapsed, the subs continued to chase
each other and the wake patterns spread out more. You
can see the wake pattern in Figure 20a, and the churn-
ing waves created by the subs in Figure 20b.

Toy boat, toy boat, toy boat

I was thinking about the Kelvin angle of about 19.5
degrees. Because the Kelvin angle is only half of the com-
plete angle at the tip of the cone (as shown in Figure 3),
the cone itself has an angle of about 39 degrees. This
rattled around in my head for a while until I realized it
was pretty close to 36 degrees.

Why is that special? The angles at the tips of a five-

July/August 2002

(b)

(b)

(b)

pointed star are 36 degrees. I've never seen it reported
before, but it seemed to me you could make a pretty cool
star with Kelvin waves.

To check it out, I got five toy speedboats and sent them
hurtling toward each other. Figure 21a shows the wake
pattern during their initial approach, and Figure 21b
shows the rendered 3D image out on the water.

The boats raced toward one another at a high but con-
stant speed. A massive collision was inevitable. But
thanks to computer graphics, somehow they had man-
aged to pass through a center point and out the other
side unscathed! Figure 22a shows the wake pattern, and
Figure 22b shows how the lake appears. In this figure,
you can see small line structures in the oldest part of
each boat’s weight. They’re visible here because I didn’t
use much damping in this figure. In real life, you can
barely see these ripples behind a fast boat on calm water.

Even though the angles are no longer magical, I cre-
ated some other stars as well. One of the prettiest was a
seven-pointed star. The seven-star wake is shown in
Figure 23a, and the 3D version is in Figure 23b.

Returning to shore

One of the great pleasures of computer graphics is
that we can play around with the world in ways that are
difficult, expensive, or just plain impractical in real life.
I don’t know if there are professional duck wranglers
out there, but even if there are, I doubt they can get
ducks to swim in precision patterns. Certainly we can’t
get speedboats to pass through each other simultane-
ously without damage.

Yet we can do all of this with computer graphics. To
me, the results are worth the effort, both for under-
standing nature and for the sheer fun of playing around

21 (a) Five
speedboats
heading toward
a common
point. (b) A
synthetic image
using the wave
pattern of
Figure 21a.

Figure 22a.

23 (a) Seven
speedboats that
have passed
through a com-
mon point.

(b) A synthetic
image using the
wave pattern of
Figure 23a.

with making interesting patterns. Don't listen to them
when they tell you be quiet and don’t make waves! H

Acknowledgments

Thanks to Steven Drucker, Eric Haines, Christopher
Rosenfelder, and Maarten van Dantzich for discussions
and encouragement. The only real images in this col-
umn are the shoreline foliage, which I shot at Green Lake
in Seattle. The ducks and galleons are public-domain
3D models, which I modified for use here. I computed
the 3D wave models in this column with my Kelvin wave
simulator. I assembled the scenes in Discreet’s 3ds max
and rendered all the 3D images with Splutterfish’s ren-
dering system Brazil r/s.

Readers may contact Andrew Glassner by email at
andrew@glassner.com.

IEEE Computer Graphics and Applications

22 (a) Five speedboats that have
passed through a common point.
The geometry of Kelvin waves
creates a near-perfect five-pointed
star behind them. (b) A synthetic
image using the wave pattern of

97

