
Digital Weaving, Part 2 ______________________________

Andrew
Glassner

Andrew Glassner’s Notebook
http://www.glassner.com

Published by the IEEE Computer Society IEEE Computer Graphics and Applications 77

The process of weaving is a great model for making
beautiful patterns. The basic ideas are conceptual-

ly simple, and the resulting fabrics can be lovely to see.
In Part 1 of this series I talked about the basics of looms

and drafts, and I showed how to model the basic weav-
ing process mathematically. I also showed a few exam-
ples from my digital loom, which implements those ideas.

This time I’ll talk about how we can run the weaving
process backward and deduce the draft from a fabric
sample. I’ll also discuss a language that helps us create
and explore complex woven patterns.

Picking up the thread
Let’s quickly summarize the basics that we discussed

last time.
To produce a piece of fabric, you set up threads on a

loom. One set of threads, called the warp threads, are
drawn through shafts that are in front of you. Another
set of threads, called the weft threads, pass through trea-
dles located on the right side. These are woven under
and over the warp threads to produce a row of fabric.

When we pick up a weft thread and run it to the left,
we need to know if it should pass over or under each of
the warp threads. The instructions for this are given in
a diagram called the draft, as in Figure 1. The draft con-
tains four binary matrices.

In the upper left, matrix F is painted black (that is, it
has the value 1) if the vertical warp thread is on top; oth-
erwise it’s white (or has the value 0). This is the woven
fabric, resulting from setting up a loom using the infor-
mation in the other three matrices and then weaving.
To weave, we need to determine the color of each cell
in F given the other three matrices.

Typically we work one row at a time, from right to left.
Given a particular horizontal weft thread, we look first
to the treadling matrix R in the upper right. This matrix
contains a single black cell in each row. We find the col-
umn with the black cell, and look downward to that col-
umn of matrix T in the lower right.

This matrix, called the tie-up, can be an arbitrary col-
lection of 1s and 0s (or black and white cells). We look
down the identified row of the tie-up and find those cells
that are black. For each black cell, we look to the matrix
S in the bottom-left of the draft.

Looking at the shaft matrix S, we locate the cell direct-
ly under the warp thread that the weft is to be woven

with next. If that cell of S is black, then the weft thread
should pass under the warp. We then continue our way
down the column of the tie-up, consulting each column
of S corresponding to a black cell in T. If any of the iden-
tified cells in S are black, then the weft passes under the
warp. If they’re all white, the weft goes on top.

We can capture this in a set of nested summations that
I call the weaving equation. I noted in my November/
December 2002 column that you can also play some
tricks with binary numbers and tables to eliminate a lot
of the complexity from the weaving equation, reducing
it to just a few look-ups and a single binary operation.

Figure 1 also shows the conventional indexing
scheme for these four matrices. Each one has its origin
at their common corner. To find an entry (a, b) for any
matrix, we first count vertically a units and then hori-
zontally b units.

This was a very fast and schematic run-through. You
can find a more complete description with examples in
my November/December 2002 column.

Deducing the draft
In my last column I spoke exclusively about weaving

patterns from a given draft. It’s natural to wonder if we
can go the other way. Given a piece of fabric, can we
deduce the draft? In other words, can we invert the
weaving equation?

The answer is yes. The process is deductive, rather
than inductive, because we’re not creating any new infor-
mation. The information we need to find the draft is
already contained in the weaving. In other words, the
piece of fabric and the draft are two versions of the same
thing, and we can turn either into the other. To use the
terminology of the weaving equation, last time we were

TS

(a) (b)

1 (a) A simple
draft. (b) The
matrices are
indexed as
labeled, first in
the black direc-
tion, then the
white.

given the warp and weft patterns S and R and the tie-up
T, and from them computed the fabric F. The deduction
algorithm runs this the other way—it takes the fabric-
overlapping matrix F as input, and finds S, R, and T.

In this discussion, I’ll ignore color, thickness, and
spacing, since these can all be read off the original fab-
ric by eye. Our goal is to find the three binary matrices
that determine the overlapping structure of the threads.

Note that determining F from a real, physical sample
can be tricky: you need to look at the fabric closely and
determine for every overlap which thread is on top. For
closely woven fabrics with fine threads, this can require
magnifying lenses, a steady hand, and a lot of patience.
But in the end, you’ll have a matrix that represents one
complete unit of the repeating pattern that makes up
the overall cloth.

Once we have F, we can use a nice algorithm for find-
ing the other matrices developed by Ralph Griswold (I
reference this in the “Further Reading” sidebar). It’s sur-
prisingly easy. I’ll describe the process verbally, but take
a look at Figures 2 through 7 for a graphic representation.

I’ll begin by creating two helper data structures, which
I’ll call LC and LR. These will contain lists of columns and
rows from F, and both begin empty.

To build LC, I’ll scan through the fabric F and look at
each column. If that column isn’t yet in the collection
LC, I’ll add it in. Then I’ll do the same thing for LR by scan-
ning through the rows, adding in any row that’s not yet
in the list.

Once we finish this process, LC has one copy of each
unique column in F, and LR has one copy of each unique
row in F. Figure 2a shows an example of this. Note that
it ultimately doesn’t matter in which order the rows and
columns are added. The arrangement of 1s in the three
matrices will move around, but they’ll still generate the
same fabric. In other words, more than one set of S, R,
and T matrices can create a given F matrix. You might
find it interesting to think about the relationships
between these equivalent representations, but I won’t
go into it any further here.

When we finish this scanning step, LC contains one
copy of each unique column in F, and LR will contain one
copy of each unique row. Let’s use the notation |LC| to
refer to the number of entries in LC, and similarly |LR| is
the number of unique rows in LR.

We can now create and initialize our three matrices.
Starting with the weft pattern R, we note that it’s as high
as the height of F and |LR| wide. Similarly, S is as wide

Andrew Glassner’s Notebook

78 January/February 2003

(a) (b)

2 Getting ready to deduce a draft from a fabric.
(a) Given the fabric F, we create LR, a collection of all
the unique rows, shown in gold, and LC, a collection of
all the unique columns, shown in blue. (b) To make the
process easier, I created a blank draft around the fabric
and moved the two collections from Figure 2a around
the draft. The heavy black lines around two edges of
each collection show how I rotated them.

3 Step 1 of the deduction algo-
rithm. We select a black cell from F,
here marked in yellow. We extract
its row, outlined in red, and look it
up in the collection of rows LR. The
row it matches is outlined in blue.
The intersection of these two rec-
tangles identifies a cell in the weft
pattern, which we set to 1.

4 Step 2 of the deduction algorithm.
Using the same cell from F that we
used in step 1 (and still marked in
yellow), we find the column that
contains it, marked in red, and find
the index of that column in the list of
columns. The match is marked in
blue. The intersection of these two
colored rectangles identifies a cell in
S, which we set to 1.

5 Step 3 of the deduction algo-
rithm. The intersection of the row
and column found in the first two
steps identifies a cell in the tie-up T,
which is then set to 1.

6 Processing of another black cell
from F, again marked in yellow.

7 The completed draft resulting
from the deduction algorithm.

as F, and |LC| rows high. Finally, the tie-up matrix T is
|LC| rows high by |LR| columns wide. I’ll initialize all
the elements of all three matrices to zero. Take a look at
Figure 2b to confirm that these numbers all line up this
way. I positioned the two collections just outside a blank
draft. Note that I rotated them from how they’re drawn
in Figure 2a for convenience.

With that preparation finished, it’s time to populate
the matrices with 1s where they’re needed. Because
of all this preparation, the job itself is pretty easy.
Essentially we scan the matrix F one cell at a time,
looking for black cells (that is, elements with the value
1). Each time we find a black cell we execute the same
procedure. To illustrate the process, let’s follow what
happens to a black cell in the bottom row of F, third
from the right: F0,2. I’ve marked this cell in yellow in
Figure 3.

The first thing we do is look up the row containing
this cell in the collection of rows, LR. I marked the fabric
row containing our yellow cell in red, and the corre-
sponding row in the collection in blue. As we can see,
it’s row number 1 from the collection that we matched.
The intersection of these two rectangles is a cell in the
weft pattern R, and we set that to black, as in Figure 3.
In symbols, R0,1 ← 1.

Now we look up the column containing this cell,
marked in red in Figure 4, and find its entry in the col-
lection of columns LC. From the figure we can see that
this is column number 3, again marked in blue. This
time the intersection of the red and blue rectangles
identifies a cell in the warp pattern S, so we set that to
black: S3,2 ← 1.

Now for the tie-up. We found entries for row 3 and col-
umn 1 from the sets LC and LR, so we set the correspond-
ing cell from the tie-up to black: T3,1 ← 1, as in Figure 5.

That’s it for this cell from F. Now we march along for

another black cell, and handle it the same way. Figure 6
shows the process for another black cell from F. We
repeat this process until we’ve run it for every black cell
in F. When we’ve done that, the matrices are fully pop-
ulated and we’re done. Figure 7 shows the draft that
results from this deduction process.

This algorithm is a natural for languages that support
associative arrays, because then you can look up a row
or column just by using it directly as an index, rather
than searching through a list.

My description of the deduction algorithm was opti-
mized for simplicity and an appealing visual presenta-
tion, rather than efficiency. Given the speed of today’s
computers, and the fact that even mechanized drafts are
rarely larger than a few hundred cells on a side, this algo-
rithm effectively runs instantaneously.

Weaving language
Procreate’s art program Painter contains an interest-

ing weaving language. The basic ideas are terrific and
let you create great-looking patterns.

The Painter weaving language has no name that I
know of, so here I’ll call it PWL. Although this language
is innovative and powerful, using it can be tricky. The
interface is buried deep inside the program, you have
to hunt online for the documentation, and it has a lot of
idiosyncracies and unexpected limitations. On the other
hand, it’s inside the Painter program, which means you
can use it as another art tool along with all the other
tools in the system. In the “Further Reading” sidebar I
provided a pointer to a document I wrote to help peo-
ple use this resource.

For my digital loom, I implemented a variation on
PWL. I added a bunch of new commands, changed the
syntax a bit, and generalized it in several directions.
Because it woudn’t be fair to the Painter folks to change

IEEE Computer Graphics and Applications 79

Further Reading
The deduction algorithm for finding the matrices from a

weaving was originally presented in “From Drawdown to
Draft—A Programmer’s View,” by Ralph E. Griswold, April
2000 (http://www.cs.arizona.edu/patterns/weaving/). In this
article, Griswold provides fragments of source code in the
Icon language. You can download Icon for free from http://
www.cs.arizona.edu/icon/index.htm. The complete program
for the deduction algorithm is available at http://www.cs.
arizona.edu/patterns/weaving/FA/index.html.

Perl is another programming language well-suited to the
deduction algorithm. It’s available for free from http://
www.activestate.com.

Procreate’s painting program, Painter 7 (http://www.
procreate.com), has had a weaving language built into it for
quite a while, and it lets you design your own weaves and
then use them as patterns for filling. Their weaving
language is a bit tricky to use. I’ve written a set of notes that
you may find useful if you want to use their system. You can
find them at http://www.glassner.com.

My weaving language (AWL) draws very strongly on
Procreate’s Painter weaving language and monographs by
Ralph Griswold.

The growblock operator is based on a discussion by
Ralph Griswold in his paper, “Variations On A Shadow
Weave,” April 1999 (http://www.cs.arizona.edu/
patterns/weaving/). The idea of using integer sequences
was presented by Griswold in “Drafting with Sequences,”
March 2002 (also available on his Web site), and a number
of other other monographs that deal with specific
sequences. His Web site contains a wealth of useful
information, including scanned-in copies of out-of-print but
fascinating reference books.

Integer sequences for the eis command come from The
Encyclopedia of Integer Sequences by Simon Plouffe and Neil
J. A. Sloane, Academic Press, 1995. The contents of that
book are also available in a terrific online resource that lets
you look up sequences by name or even by the numbers in
the sequence. Go to http://www.research.att.com/~njas/
sequences/ to use this database of more than 76,000
sequences. I’ve only provided a small handful of these
directly in my code. An AWL interpreter connected to the
Internet could do a real-time query to the online database
to pick up any sequence named.

their system and still use their name (they might not like
the changes I’ve made), I christened my variant
Andrew’s Weaving Language, or AWL. From now on I’ll
stick to AWL, but be aware that it’s just an extension of
the Painter language.

The purpose of AWL is to create a sequence of num-
bers that can go into the S and R matrices. Recall that
each column of S can have only a single 1, and each
row of R has the same restriction. We can specify each
of these matrices with just a list of integers. As Figure
1 shows, we count S down and to the left, and R up
and to the right. Each list entry for R is in the range
[0, |LR|−1], and each entry for C is a number in the
range [0, |LC|−1]. Figure 8 shows an example of how
to specify each of these matrices with a list; the S and
R matrices only need a single number per column and
row, respectively, while the matrix has all of the 1s and
0s spelled out. For the tie-up, anything except a 0 is
considered a 1.

I implemented AWL as a postfix language, which uses
a technique known as stack notation, or reverse Polish
notation. Jan Lukasiewicz, a Polish mathematician
(1878–1956), invented this style. In postfix notation, we
write the operands first, and then the operator. So rather
than writing 2 + 3, we’d write 2 3 + . Postfix is nice
because we don’t need parentheses. The traditional, or
infix, expression 2 + 3 ∗ 4 is ambiguous. If we multiply
first we get 2 + (3 ∗ 4) = 14, but if we add first we get
(2 + 3) ∗ 4 = 20. Usually we use precedence rules to
determine how to proceed. The convention is that mul-
tiplication has a higher priority than addition, so that
expression would conventionally evaluate to 14. If we
wanted to add first, we’d have to write (2 + 3) ∗ 4.
Postfix gets around this problem. To add first, you could
write 2 3 + 4 ∗, or even 2 3 4 + ∗.

These last two forms are the same because the eval-
uation uses a stack. The standard metaphor for a stack
is a pile of cafeteria trays: you remove them one at a
time from the top, and new ones get added to the pile
one at a time, to the top. Each time we see a number,
we push it onto the top of a stack. When an operator
comes along, it pops its operands off the stack, com-
putes with them, and then does a push to put the result
back on. In a well-formed expression, when you reach
the end there’s just one entry remaining in the stack,
holding the final value of that computation. Probably
the best-known and most widely used postfix language
used today is PostScript, the language that’s used by
computers to communicate with printers and specify
page layouts.

Postfix expressions are appealing from a program-
ming point of view because they’re much easier to imple-
ment than more traditional infix expressions.

Getting started
Before we get going, let’s define a few terms. To make

things easier for this discussion, I’ll speak only about
matrix S, which describes the warp threads and their
associated treadles. Everything is the same for the weft
and treadle matrix R, with just the obvious change to
the matrix sizes. It also applies to the tie-up matrix T.

It’s hard to present a language like this without it
resembling a big shopping list. Each command deserves
a moment’s explanation, however, and that inevitably
turns into a big list. But we can make that list as succinct
as possible by establishing some conventions first, and
then using them to keep the discussion focused just on
what each operator does.

The domain is a pair of numbers that specify a range of
the available shafts. The domain is initialized to the range
[0, |LS| − 1]. Though I start at 0 for convenience, many
weavers start counting at 1. The purpose of the domain
is to let us conveniently create runs, or sequences of num-
bers that count up or down. A complete run cycles
through the entire domain. For example, suppose that
we specified that we have seven treadles. Then a com-
plete run might be 0 1 2 3 4 5 6. But we can start
anywhere, so another complete run is 3 4 5 6 0 1 2.
If we set the domain to the range [2, 5], then a complete
run might be 3 4 5 2.

As you’ve probably guessed, all numbers are adjusted
to the domain using modulo arithmetic for the current
domain when they’re generated. So if we have seven trea-
dles, no matter how we calculate them, the only numbers
that actually come out at the end of the process are in the
range [0, 6]. If we compute the sequence 4 5 6 7 8 9,
then that would become 4 5 6 0 1 2.

The language has only three different elements: oper-
ators (which are identified by name, like reverse),
and two different kinds of operands: scalars (or indi-
vidual numbers), and sequences, or lists of numbers.

To create a sequence we can just list the numbers, sep-
arated by spaces. Now suppose that we want to follow a
sequence by another operand that’s just a single number.
For example, the rotate command takes a sequence
and a number, and rotates the sequence that many steps.
If the sequence is 1 2 3 4 and we want to rotate it two
steps, in an infix language we could write 1 2 3 4
rotate 2. But in postfix we can’t write 1 4 3 2 2
rotate, because the list 1 4 3 2 2 looks like a single
big list. In this case we might say that the last element on
the list is the one we want, but many operators take two
lists as input, so we need to distinguish where one list
ends and the next begins.

The trick is to use the push command after a list. That
tells the system that all the numbers that have been given
since the last operator are to be interpreted as a single
operand, and get pushed on the stack that way. So we’d
write 1 4 3 2 push 2 rotate. Note that we didn’t
need a push in front of rotate, since the command
implicitly ends the operand that precedes it. Adding a
push there wouldn’t hurt, but we don’t need it.

Figure 9 shows a screen shot of my digital loom in
action. We type in an AWL expression into the Warp pat-
tern window in the AWL form, and press the associated
button. It evaluates the expression, and copies the

Andrew Glassner’s Notebook

80 January/February 2003

T 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0

S 3 2 2 0 0 1 3 3 0 1 2 3 2

R 0 1 2 1 0 3 2 3 0 0 2 2 3 3 1 3

8 Specifying the different matrices with lists.

resulting sequence into the Warp pattern field in the
weaving form. We can also type an expression into any
of the other AWL fields and they get copied into the
weaving form. We can use AWL, then, to specify the
spacing, thickness, and color patterns for the threads
(in addition to the S, R, and T matrices).

Finally, I’d like to cover an idea called reshaping.
Some operators take two lists and combine them in a
way that only makes sense if both lists have the same
length. For example, the operator interleave cre-
ates a new list by folding together two others. If the
first operand is 1 2 3 and the second is 7 8 9, we’d
write this as 1 2 3 push 7 8 9 interleave,
resulting in 1 7 2 8 3 9. The similar expression
2 3 push 3 4 5 interleave wouldn’t make
sense, since the left operand 2 3 has length 2, while
the right operand 3 4 5 has length 3. This kind of
thing comes up a lot, and in many cases the right thing
to do is to repeat the shorter operand until it’s as long
as the longer one. So in this case, we’d just repeat the
operand 2 3 to create 2 3 2. This process is called
reshaping. If both lists are the same size, nothing hap-
pens to either. Many of the operators automatically
perform a reshaping step before they go to work. This
means that our earlier expression 2 3 push 3 4 5
interleave would be evaluated as though it was 2
3 2 push 3 4 5 interleave.

There’s no provision for turning reshaping off, since
if the operands were of different sizes and we didn’t
reshape, it would raise an error.

Most operators take one or more elements off of the
stack, process them, and then push a result back on the
top. If the operand is a sequence, I’ll write it as A or B. If
it’s a single number, I’ll write that as c or d. Individual
elements of sequence A are written Ai. So A0 is the first
number. I’ll write AL to represent the last number in the
sequence and |A| to refer to the length of A. So if A is 1
3 5 7, then A0 = 1, AL = 7, and |A| = 4.

Operands are popped off the stack in the reverse order
from the definition of the operator. For example, sup-
pose we define an operator named combine as A B

combine. If we enter an expression 1 2 push 3 4 5
combine, then we first pop 3 4 5 and it becomes B,
and then we pop 1 2which is treated as A.

In all of the following examples, the domain is [0,7].
Many commands have symbolic shortcuts, which are
given in parentheses right after the command. Note
that the shortcuts are made out of symbols, so that they
don’t eat up any more words (because we can use AWL
to create color expressions that use color names, any
word used by an AWL command becomes unavailable
as the name of a color). Many of the shortcuts are sim-
ilar to those in PWL, but there are a few changes and
lots of additions.

Basic operators
There are a few operators that I think of as “basic,”

because they’re pretty straightforward.

A dextend (+). If |A| > d, truncate A to d elements.
If |A| < d, repeat A as needed until there are at least d ele-
ments, and then truncate that result after d elements.

1 2 3 4 5 push 3 extend = 1 2 3
1 2 push 3 extend = 1 2 1

A d repeat (∗). Repeat A a total of d times.

1 2 3 push 3 repeat = 1 2 3 1 2 3 1 2 3

Areverse (@). Reverse the order of the elements
of A.

1 3 5 7 reverse = 7 5 3 1

A drotater (>>) and A drotatel (<<). Rotate
the elements of A to the right (or left) by d steps.

1 2 3 4 5 push 2 rotater = 4 5 1 2 3

A c nth. Build the new sequence from element 0 of
A, then skip c−1 elements, take the next, skip another
c−1, take the next, and so on.

1 2 3 4 5 6 7 push 2 nth = 1 4 7

Apalindrome (|). The output is A followed by the
reverse of A, except that the first and last elements of A
aren’t included in the reversed version. We don’t repeat
the first and last elements because we want to avoid flat
spots both when making the new sequence, and when
we repeat one after the other. For example, if we didn’t
do this then 1 2 3 palindrome 2 repeatwould
be 1 2 3 3 2 1 1 2 3 3 2 1 rather than 1 2 3 2
1 2 3 2, which is almost always more appropriate for
creating weaving drafts.

IEEE Computer Graphics and Applications 81

9 A screen shot
of my digital
loom.

1 2 3 4 5 palindrome = 1 2 3 4 5 4 3 2

Up and down
We use these operators to create runs, or ascending and

descending integers within the current domain. As we saw
last month, many drafts consist of these runs, so it’s use-
ful to have a bunch of convenient ways to specify them.

A Bdown (>) and A Bup (<). For down, the result
is A, followed by a run descending from the last element
of A to the first of B.

1 5 3 push 6 3 down = 1 5 3 2 1 0 7 6 3

The command up is the same, but the run ascends.

A B c downloop (>l) and A B c uploop (<l).
The command downloop is like down, but inserts c
complete runs in addition to the single descending run.

1 2 3 push 6 3 push 1 downloop

= 1 2 3 2 1 0 7 6 5 4 3 2 1 0 7 6 3

The command uploop is the same, but each run
ascends.

A Bdownup (>u) and A Bupdown (<d). Reshape
the inputs. For downup, take the first element of A and
insert a descending run to the first element of B. Now
ascend to the second element of A, descend to the sec-
ond element of B, and so on.

1 2 3 push 6 7 downup

= 1 0 7 6 7 0 1 2 1 0 7 0 1 3 2 1 0 7 6

The command updown is the same, but the alternation
begins with an ascending run.

A B cdownuploop (>ul) and A B cupdownloop
(<dl). The command downuploop is like downup,
but inserts c complete runs in each inserted sequence.

1 push 5 push 2 downuploop

= 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5

The command updownloop is the same, but the alter-
nation begins with an ascending run.

A B ramp (−). This creates a run from AL to B0, but
it does so entirely within the domain. Therefore, if
AL < B0, it creates an ascending run. Otherwise, it’s a
descending one.

2 push 5 ramp = 2 3 4 5
7 push 5 ramp = 7 6 5

A B cramploop (−l). This command is like ramp,
but like uploop or downloop it includes c full runs.

Advanced operations
The previous commands were all designed to do

basic operations on sequences, or create simple runs.

This next batch of commands lets us make more com-
plex patterns.

Abinary0 and Abinary1. Treat A as the length of
alternating sequences of 0s and 1s. The command
binary0 starts with 0, while binary1 starts with 1.
This is a convenience command mostly useful for spec-
ifying tie-ups.

3 1 4 2 2 binary0= 0 0 0 1 0 0 0 0 1 1 0 0

A Bblock (#). Reshape the inputs. Each entry Ai is
repeated Bi times.

3 4 5 1 2 push 2 3 block

= 3 3 4 4 4 5 5 1 1 1 2 2

A B blockpal (#p). The command blockpal is
like a block, but it first processes its inputs by making a
palindrome of them, treating the inputs as pairs. So in
the following example, the pair 1 2 is considered the
first element so it’s not repeated at the end, and the pair
2 2 is the last element, so it’s not repeated in the middle.

1 3 2 push 2 4 2 blockpal

= 1 1 3 3 3 3 2 2 3 3 3 3

name c d eis. The value of name is a string, typically
a single letter followed by digits. It specifies an index
number in the Encyclopedia of Integer Sequences, which
is a massive reference work containing tens of thousands
of interesting integer sequences (see the “Further
Reading” sidebar for more information). From that
named sequence, we skip the first c entries, and then
extract the next d values.

A B growblock (=). First, reshape the inputs.
Each element Ai is followed by a ramp to B0 (recall that
goes up or down, as needed, to stay within the run). At
the end of the run, a palindrome of the first i elements
of B is inserted, and then a run to Ai+1 is made.

This diagram shows the result for input sequences
with three elements each. The dash (—) stands for a
ramp.

A0—B0—A1—B0B1B0—A2—B0B1B2B1B0

0 1 2 push 4 5 6 growblock

= 0 1 2 3 4 3 2 1 2 3 4 5 4 3 2 3 4 5 6 5 4

The command growblockwas inspired by an analysis
of shadow weaves by Ralph Griswold in one of his mono-
graphs (see the “Further Reading” sidebar).

A iblock (i#) and A iblockpal (i#p). Like
block, but the values are interleaved in one operand.
Thus element A0 is repeated A1 times, element A2 is
repeated A3 times, and so on.

The command iblockpal is like blockpal, build-
ing palindromes from its input pairs, except that they’re
taken in interleaved fashion.

A B interleave (%). This command first

Andrew Glassner’s Notebook

82 January/February 2003

reshapes its inputs. Then it creates a new string by tak-
ing each element of A and then B in turn.

1 2 3 4 push 9 7 5 interleave

= 1 9 2 7 3 5 4 9

A B permute. First, repeat A until its length is an
integer multiple of the length of B. That is, create a new
vector A′ by choosing the smallest r such that r |A|/|B|
is an integer.

Now create a new vector B′ by repeating B so that it
is the same length as A′, but with a twist. Add 0 to the
first repeat of B, and |B| to the second, 2|B| to the third,
and so on. For example, if A = 1 2 3 4 and B = 3 1 2,
then we choose r = 3 and create

A′ = 1 2 3 4 1 2 3 4 1 2 3 4
B′ = 3 1 2 (3 + (3 1 2)) (6 + (3 1 2))
(9+ (3 1 2))= 3 1 2 6 4 5 9 7 6 12 10 11

The output is then found by using each element of B′
as the index from A′. That is,

where p is the length of either of the new vectors. The
entries of B′ are taken modulo p.

1 2 3 4 5 6 push 1 0 permute= 2 1 4 3 6 5
3 4 5 push 2 1 permute = 5 4 4 3 3 5

A B pbox. This is a convenience for the following
operation, where |A| is the length of A:

A B |A| extend permute

A Btartan and A Btartanpal. These are a small
variation on the iblock and iblockpal commands.
Some tartan descriptions double the thread count for
each entry, and AWL expects single counts. So after
reshaping, each Ai is repeated Bi/2 times.

A Btemplate (:). Replace each entry in A with a
little pattern based on the elements of B. Weavers call
this process subarticulation.

First, create a new vector C with the same length
as B (that is, |C| = |B|) and initialize C to all 0s. Now
compute Ci = Bi − B0 for all i = [1, |B|]. Thus the first
element of C is 0, and all other elements are the
signed distance of each Bi from B0. So if B = 6 7 5
then C = 0 1 − 1, and if B = 3 4 5 1 2 then
C = 0 1 2 − 2 − 1.

Compute the output by replacing each element Ai

with the new |C|-length vector Ai + C − 1.

0 1 2 3 push 2 template = 1 2 3 4
0 3 6 push 2 3 1 template

= 1 2 0 4 5 3 7 0 5

A c d twillr (t>>) and A c d twilll (t<<).
Make c repeats of A, each time rotating it to the right (or
left) one more time than before.

1 2 3 4 push 3 push 1 twillr

= 1 2 3 4 4 1 2 3 3 4 1 2

Utilities
This last batch of commands are for utility, stack man-

agement, and bookkeeping functions.

� clear. Erase the entire stack.
� concat (,). Take the top two elements from the

stack, create a new sequence by placing the second
after the first, and push that result back on the stack.

� dup. Get the top item on the stack and push a new
copy of it onto the stack.

� pop. Discard the top element of the stack.
� push (/). Take everything up to now and treat it as

a single element of the stack.
� c d domain. Set the limits on the domain to [c,d].
� swap. Swap the top two entries on the stack.
� veclen. Find the length of the top element on the

stack and push that value.
� vmax and vmin. Push the value of the largest (or

smallest) element in the sequence on top of the stack.

A summary of all these commands appears in Table 1
(next page).

Tie-up and example
The tie-up is a matrix of 1s and 0s. When applying

the result of an AWL expression to a tie-up, the lan-
guage treats anything that’s not a 0 as a 1. The output
is automatically extended as necessary to make it the
correct size. We apply elements to the tie-up using
Figure 1’s indexing.

Even short AWL expressions can easily become very
long, impenetrable sequences of digits. The ability of
languages like this to symbolically represent such lists
is one of its biggest advantages.

That also poses a challenge for demonstration, since
examples of expressions easily expand into giant strings
of numbers. So Tables 2 through 4 (on page 85) pro-
vide some short examples. In these tables, I assume that
the domain is set to [0,7]. In Table 2, the left column is
the command that’s just been processed, the column to
its right is the top of the stack, and to its right is the sec-
ond item in the stack. Following the expression, it reads
1 push 4 up palindrome 2 push 7 up inter-

leave 2 rotate. In Table 3, following the expression,
it reads 2 3 push 3 2 block 4 5 3 template. In
Table 4, following the expression 1 3 push 6 2
updown 2 nth reverse.

Languages like AWL abound in idioms, or little con-
structions that seem to recur frequently. Let’s look at one.
Suppose we want to create a sequence that uses alternat-
ing members of A and B, giving us
A0 B1 A2 B3 .… The general approach would be like this:

A 1 nth B 1 rotatel 1 nth interleave

Table 5 (on page 85) shows this in action. Following the
expression, it reads 0 1 2 3 push 1 nth A B C D
push 1 rotateL 1 nth interleave.

Using the domain command, you can change the

 ′ ′ ′ ′′ ′ ′ ′A A A AB B B B0 1 2, , , ... ,p

IEEE Computer Graphics and Applications 83

domain as often as you like during an expression. So for
example, in this expression

0 / 7 domain 4 / 2 up 1 / 5 domain 4 /

2 up concat

the domain is first set to [0,7], and then an upward
sequence 4 5 6 7 0 1 is generated (I used the short-
cut / for push). Then the domain is set to [1,5] and the
same run is specified, but this time the domain limits it,
and we get 4 5 1 2.

Sometimes there are several good ways to write a
sequence. In the following discussion, I’ll use AWL’s sym-

bolic shortcut names for simplicity; recall that push is
/, repeat is ∗, concat is ,, block is #, interleave
is %, and template is :. Let’s try to find a compact way
to write the following:

7 6 7 6 7 6 7 6 5 4 5 4 5 4 5 4 3 2 3 2

3 2 3 2

One way to do this is to note that we have four repeats
of the sequence 7 6, then four of 5 4, and four of 3 2,
so we might write

7 6 / 4 ∗ 5 4 / 4 ∗, 3 2 / 4 ∗,

Andrew Glassner’s Notebook

84 January/February 2003

Table 1. Summary of AWL commands.

Command S* R* Summary

A d extend + Repeat or clip A to d elements
A d repeat ∗ Repeat A a total of d times
A reverse @ Reverse the elements of A
A d rotatel << Rotate A left by d steps
A d rotater >> Rotate A right by d steps
A d nth Take every dth element of A
A palindrome | A followed by a near-reversal
A B down > A, descending run from AL to B0, B
A B c downloop >l Like down but include c runs as well
A B downup >u √ Alternating down and up runs
A B c downuploop >ul √ Like downup but include c runs as well
A B up < A, ascending run from AL to B0, B
A B c uploop <l Like up but include c runs as well
A B updown <d √ Alternating up and down runs
A B c updownloop <dl √ Like updown but include c runs as well
A B ramp − Go up or down as needed to stay in domain
A B c ramploop −l Like ramp but include c runs as well
A binary1 Treat A as lengths of alternating 1s and 0s
A binary0 Treat A as lengths of alternating 0s and 1s
A B block # √ Each Ai is repeated Bi times
A B blockpal #p √ block with an internal palindrome
name c d eis Extract d elements, starting at c, from EIS name
A B growblock = √ Interleave A with growing palindromes of B
A iblock i# √ Like block but the inputs are interleaved in A
A iblockpal i#p √ iblock with internal palindrome
A B interleave % √ Take alternating elements of A and B
A B permute Use elements of B to index A
A B pbox Shortcut for A B | A | extend permute
A tartan √ Like iblock but repeats are Bi/2
A tartanpal √ tartan with internal palindrome
A c d twillr t>> Make c repeats of A rotating each by d more
A c d twilll t<< Like twillr but rotate left
A B template : Create a subarticulation using B as a template
clear Erase the stack
concat , Concatanate the top two stack elements
dup Pop the top of stack and push it back twice
pop Discard top of stack
push / Consider all since last command a single sequence
c d domain Set the domain to [c, d]
swap Exchange top two stack elements
veclen Push length of list on top of stack
vmax Push largest element in sequence on top of stack
vmin Push smallest element in sequence on top of stack
* The S column provides the symbolic shortcut, if available. If the R column is checked, the command reshapes its inputs.

We might instead notice that this is four 7s interleaved
with four 6s, and the other pairs follow the same pat-
tern, leading us to write

7 5 3 / 4 # 6 4 2 / 4 # %

We could also treat each eight-element chunk as a sub-
articulation on the starting values:

7 5 3 / 8 7 8 7 8 7 8 7 :

where I used the wraparound feature of modulo arith-
metic to get the effect we’re looking for. We could fur-
ther encode that pattern of 8s and 7s:

7 5 3 / 8 7 / 4 ∗ :

All five of these expressions, from the explicit list of num-
bers to this most compact result, evaluate the same
thing. They’re just different ways of looking at and
expressing how we see the structure of the patterns. This
example wasn’t exhaustive by any means—there are
several other ways to write this pattern.

We can also play around with pattern languages. For
example, suppose you had a sequence 1 2 3 and you
wanted to make a new sequence that had each element
repeated four times. How would you do it?
Remembering that the block operator reshapes its
inputs, we only need to say 1 2 3 / 4 # and we’re
done. There are lots of cool tricks like this.

Colors, spacing, and thickness
In my last column, I talked about each thread’s thick-

ness as a number between 0 and 100. I also talked about
spacing as a number from 0 to 1, but we could just as
easily set it to 0 to 100, and divide by 100 internally.

Thus all the language elements discussed above can be
typed into the spacing or thickness fields just as easily as
they can be typed into the warp and weft pattern fields.

Color is a slightly different issue. All of the examples
in the last section were in terms of integer sequences.
For some operators (like up) that’s the only kind of argu-
ment that makes sense. But other operators don’t care
what their operands look like. For example, inter-
leave just takes out elements from one input sequence
and then the other. Those input sequences can be inte-
gers, of course, but they could be anything. In particu-
lar, they can be text strings.

In my system, I provide access to color by name. You
can use any of the 140 built-in colors in Microsoft’s C#
programming environment, any of the roughly 40 col-
ors commonly used in Scottish tartans, or any custom
colors you create and name yourself.

Thus you can type in something like Blue Gold
Red reverse and get back the list in opposite order,
or something more ambitious like Blue Gold Red
push 2 3 2 block.

If you type in nonnumerical data into any of the
fields except for the color field, the system will raise an
error.

Weavings
Of course, the whole reason for creating these inter-

esting patterns is to use them to create attractive weav-
ings. Figures 10 through 29 show a variety of different
weavings, along with the AWL expressions for the tie-
up, warp, and weft. Many beautiful patterns come from
simple specifications. Sometimes the expressions are
bulky, but they’re still a lot shorter than simply listing
all the numbers for a given matrix.

IEEE Computer Graphics and Applications 85

Table 3. A second example of stack processing.

Operation Top of Stack

2 3 push 2 3

3 2 block 2 2 2 3 3

4 5 3 template 5 6 4 5 6 4 5 6 4 6 7 5 6 7 5

Table 4. A third example of stack processing.

Operation Top of Stack

1 3 push 6 2 updown 1 2 3 4 5 6 5 4 3 4 5 6 7 0 1 2

2 nth 1 4 5 4 7 2

reverse 2 7 4 5 4 1

Table 2. An example of stack processing.

Second Item
Operation Top of Stack in Stack

1 push 4 up 1 2 3 4

palindrome 1 2 3 4 3 2

2 push 7 up 2 3 4 5 6 7 1 2 3 4 3 2

interleave 2 1 3 2 4 3 5 4 5 3 7 2

2 rotate 7 2 2 1 3 2 4 3 5 4 5 3

Table 5. How to create a simple sequence that uses alternating
values from two others.

Second Item
Operation Top of Stack in Stack

0 1 2 3 push 0 1 2 3

1 nth 0 2

A B C D push A B C D 0 2
1 rotatel B C D A 0 2
1 nth B D 0 2
interleave 0 B 2 D

T 00110011/1/8t<<
S 3/4>0/7<1∗,
R 3/4>0/7<2∗,

10 Surveillance.

T 01100110/3/8t>>
S 0/7<1>00:
R 0/7<010:

11 Garden Party.

T 11110000/1/8t<<
S 0/7<0>
R 0001124613566777

12 High Seas.

T 1323141112121111212311 binary0

S 45/1∗45012321/13131311#p,
R same as S

13 House of Cards.

Andrew Glassner’s Notebook

86 January/February 2003

T 10001001/1/8t>>
S 0/7<0/7−12/7+:, |
R same as S

14 Memories of Sand.

T 23722133114641124123623 binary1

S 0/7<121:|
R 0/7<010:|

15 Kiss Me, You Fool.

T 10000101/1/8t<<
S 243/656>u7/0>, |
R same as S

16 Caffeine Buzz.

T 1100110/1/8t>>

S 0/5<|753/87/4∗:,1,01/4∗23,, |
R same as S

17 Box Suite #1.

IEEE Computer Graphics and Applications 87

T 11100110/1/8t<<

18 Box Suite #2. A variation on Figure 17. Only the tie-
up has changed.

T 12/7/1614/14 + 15,,# binary1

S 0/7<7/0> = |
R 0/7<02461357 = |

19 Imperfect Edges. A shadow weave. Both sets of
threads alternate black and white, the warp starting
with black and the weft starting with white.

S 0/6−1/7− = |
R 0/6−0/6− = |

20 Breaking Out. A variation on Figure 19. The tie-up
is unchanged.

T 00001110/1/8t<<
S 0/7−11236532#04:
R 0/7−11112343#04:

21 Nude Descending a Fabric. Another shadow weave.

Andrew Glassner’s Notebook

88 January/February 2003

T 222221311 binary0 22221313

binary1,2∗
S 0/7−2∗|12345678/12224568#|1,#11,
R 0/7−2∗|12345678/1234578#|1,#11,

22 Fly’s Eye.

T 10001110/1/8t<<
S 0/7−2∗/11212232334

34445455555656666| #
R same as S

23 Sandworms.

T 10001110/1/8t>>
S 0123 |3∗12345654321:32123:
R 7654 |3∗87654345678:12321:

24 Lucky’s Last Chance. Subarticulation can be used to
make large and subtle patterns.

25 Detail of Figure 24.

IEEE Computer Graphics and Applications 89

T 11100110/1/8t<<
S 0123 |3∗12345 |1,:32123:
R 7654 |3∗2345432:12321:

26 Long Green. Another use of multiple subarticulations.

27 Detail of Figure 26.

T 5115115113111122112 binary0

S 0/5< |
R 0/5< |

28 The Pen.

T 3233221112121411411 binary1

S 45012321/13231311#p
R same as S

29 Waffle Iron.

Andrew Glassner’s Notebook

90 January/February 2003

The real beauty of having a symbolic language is that it’s
easy to try experiments. Once you have a pattern you like,
you can easily explore variations. How about a subarticu-
lation here? Or a palindrome there? Try starting with
something pretty and play with it for a while to come up
with something else that you like as much, if not better.

Experimenting in a digital loom is a lot faster than
doing it in real life, or even with paper and pencil. Just
type in the expression, push the button, and see the

result. Once you’ve created a draft you like, you can then
take it to your loom and produce a textile that’s both
functional and beautiful.

Next time we’ll talk about Scottish tartans, and how
to implement a digital loom. �

Readers may contact Andrew Glassner at andrew@
glassner.com.

