Andrew
Glassner

1 Inatwill,
when two
stripes of differ-
ent colors over-
lap, we see an
equal mix of
their colors.
When the two
stripes have the
same color, we
see a solid block
of that color.

80

Andrew Glassner’s Notebook

http://www.glassner.com

Digital Weaving, Part 3

In my last two columns I described the theory and
practice of weaving, and I presented a language for
creating woven patterns. This time I'll talk about the
important and interesting fabrics known as tartans, and
then discuss writing a program to simulate a loom.

A quick review

Recall from part 1 that a twill is a distinctive pattern
type, formed by a tie-up that creates a diagonal design.
Perhaps the best-known twill fabric today is denim, but
close behind that is the Scottish tartan. Tartans are the
familiar-colored plaids that have traditionally adorned
kilts and other formal Scottish clothing.

Tartans always use the same pattern of colors in the
warp and the weft; weavers say that such a pattern is
“tromp as writ” (for complete discussions of weaving
terms and ideas, please see the previous installments of
my column in the November/December 2002 and
January/February 2003 issues). The result is that tartans
are made up of intersecting stripes of different widths and
colors. As Figure 1 shows, when two stripes of different
colors overlap, we get a blended color that mixes equal
amounts of each. When two stripes of the same color
overlap, we get a solid rectangle of that color. The color
pattern that describes a particular tartan is called its sett.

Today’s tartan
Today weavers regularly produce thousands of differ-
ent setts. Tartan cloth is used casually and for ceremoni-

o
S

YY) Y mmxm
oo o~
NI N

m\m\\immm\m

%@%&%&\%ﬁ N

!h. b b bt b bt

March/April 2003

Published by the IEEE Computer Society

al clothing, kilts, and other formal wear. Because some
clans and families are protective of their registered tar-
tans, there arose a need for some shared patterns that
people could wear when they gathered as a group. For
example, if a traditional marching band got together and
everyone wore their own family’s sett, it could look like a
crazy mishmash of patterns. To help unify groups that
don’t have their own tartan, three setts (Hunting Stewart,
Caledonia, and Black Watch) have been generally accept-
ed as universal tartans that may be worn by one and all.

The Hunting Stewart pattern (see Figure 2) has been
around since the early 1800s. The Caledonia sett (Figure
3) probably dates back to about 1800, and members of
the British Army have worn the Black Watch (or
Government) sett (Figure 4) since the 1740s.

Tartan colors are generally drawn from a palette of a
couple of dozen colors, with custom colors occasionally
included for specific setts. Most colors are referred to with
labels that consist of just a few letters. 'm not aware of
any standardized RGB list of these colors, so I examined
and measured several hundred tartans and compared
their actual colors against their labels. Some variation
exists, of course, but the colors are pretty consistent across
different manufacturers and sources. Table 1 summarizes

Bt S B B e Pr ey o

.
]

e
r
5
5§
3
%
\
"
i
b
%
.
.
5
¥
8
4
\
5
n
5
§
5
.
5
H
]
5
§
.
5
.
i3
3
i3
.
%
3
N
5§
\

-
i
§
§
3
N
5
5
.
§

g

[
bl
5
5
5
5
5
5
.
i
§
§
5
5
.
u
%
5
§
5

2 The Hunting Stewart tartan. The AWL (recall that
AWL is Andrew’s Weaving Language, which | described
in detail in part 2) expression for this settisB9G4B9K
3B3K8G27R4G27K8G5K13G4K13G5K8G27Y4
G 27K8B 3 K3 tartan.

0272-1716/03/$17.00 © 2003 IEEE

N AN, 5
AR TR AR R AR A
%
5

o R e i s

A L R R R R AR

)

:c'.u-"l.v'.u’u.v.v:l::—'o::::::::r-ol;l

3
3
i
;
}
:
:
»
ol
~
~
N
X
5
3
+
3
5
5
§
g
5
5

{ CEEEEEEE P E

[

R L £ 2 r E R e R r A s bRt s s s s PR b B s s
IrIIIIIIIIIII

e

forra

R

0

e e Rt CELEEEELLLEY
n
k3

\
B e o s
» =

3 The Caledonia tartan. The AWL expression for this
settisR42A18K4A4K4A18K36Y6G42R26K6R 26
W 4R 26 tartan.

4 The Black Watch tartan. The AWL expression for this
settisB22K2B2K2B2K16G16K2G16K16B16K2B
2 tartan.

the tartan colors. Note that white and black aren’t at the
limits of the RGB range. This is because natural wools
have a more limited color gamut than CRT phosphors.

Building a digital loom

I built my digital loom using C#, a new programming
language from Microsoft. For many years I've been hap-
pily programming in good, old-fashioned, vanilla C.

I decided to use my digital loom as an immigration pro-
ject into the C# language and its associated .NET envi-
ronment for writing Windows code. I was surprised by
how easy it was to write my program in this system, and
in the course of this one project I've become a C# convert.

Let’slook at the digital loom from the outside-in, start-

Table 1. RGB values for tartan colors, identified
by their traditional initials and a more
informative label.

Initial R G B Name
A 60 132 172 Aqua
B 44 58 132 Blue
DB 12 10 76 Dark blue
LB 124 130 196 Light blue
MB 20 26 68 Dark blue
NB 4 2 36 Navy blue
RB 4 2 100 Royal blue
C 148 2 36 Dark pink
VLC 220 170 172 Pink
DG 4 50 20 Dark green
FG 68 106 84 Blue-green

G 4 82 36 Green

LG 44 154 20 Light green
MG 4 58 20 Darker green
K 20 18 20 Black
M 116 26 52 Magenta
DN 76 74 76 Dark gray
LN 188 186 188 Light gray

N 124 122 124 Mid-gray
DO 220 90 4 Dark orange

LO 236 114 60 Light orange
O 252 74 4 Orange

P 116 2 116 Purple
DR 204 2 4 Dark red
LR 204 42 44 Light red

R 204 2 4 Red

WR 100 2 44
S 228 86 4

Dark magenta
Sandy yellow

DT 68 18 4 Dark tan
LPT 204 150 100 Slightly light tan
LT 148 102 52 Light tan
RT 244 920 44 Reddish tan
T 84 62 20 Tan
MU 204 122 20 Orangeish
W 228 226 228 White
DY 148 122 4 Dark yellow
LY 244 218 4 Light yellow
Y 236 194 4 Yellow

ing with the user interface. Figure 5 (next page) shows
a screen shot of the digital loom in action. This figure
includes a graphical editor window that I didn’t include
in the screen shot from part 2 of this column. I built this
because I thought it might be fun to enter AWL expres-
sions by drawing them, rather than typing them in.

The main control form in Figure 5b and the woven
fabric output in Figure 5c were the only two windows I
had for quite a while. The weaving display shows the
warp and weft patterns and the tie-up using tradition-
al black-and-white matrices, with thread colors drawn
outside them. This is mostly a read-only display, but you
can flip bits in the tie-up by clicking on them.

The panel in Figure 5b holds most of the basic con-
trols. The upper left of this panel has counters to set the
width and height of the displayed fabric in the weaving
window. The other major controls are buttons to speci-

IEEE Computer Graphics and Applications

81

Andrew Glassner’s Notebook

5 Ascreen shot
of my digital
loom. Figure 5a
shows the color
chips. Figure 5b
is the main
control panel,
and the window
in Figure 5c
holds the
woven fabric.
Figure 5d is my
graphical AWL
editor, and
Figure 5e is the
AWL evaluation
window.

82

|Andrew’s Weaving Designer v1.0

=l

- Drawing

o p— Co—
Width ﬂ Height ﬂ ‘

RediawWeaving

Thiead

Thickness:

Spacing

NET Colors [

Add Custom Color

i [=1 4

I™ Patter fids
I Weare Giid
I Patter Units
oot I Weave Units
I™ Color Draft

Eliiae———

Background

PostSeiipt

Load |

~Destination ‘

@ Add ToWap € AddTowsit Thead

Save

SandyBrown
Color

Thickness.

,1—
Spacing

B = welt Teads

~Tieup

Checkerboard

Qui |

@ FormGraph 8 Language

GraphType ~Paltem

~Color [~ Tieup

© Pattsm
© Color
° Thickness
© Spacing

" Thickness
C Spacing

push push 0 push 7 up push push D push 7 up push 12
push 7 estend templale concal painciome

wiarp Translate and Wiits

Maroon 1000100171/86>

wiarp Translate and Wiits

push push 0 push 7 up push push D push 7 up push 1 2
push 7 estend templale concal painciome

Welt Transiate snd Wite

SandyBrown

e Tieup Translate and Wiite:

Thickness

~Spasig

100

Warp Translate and Wiite

100

Warp Translate and Wiite

Wet Transiate snd Wite

wet Translats snd Wite

fy some details about the display itself, saving and load-
ing weaving files in the weaving information file (WIF)
format, and a button to save the weaving in PostScript.
The left side of this panel has two sets of four text boxes.
Each set (one for the warp threads, one for the weft) lets
me enter expressions for the threading pattern, thread
colors, thickness, and spacing. There’s also a numerical
counter for identifying how many threads are to be used
for that pattern.

Because I specify colors by name in the text fields
(such as black or aqua), I provided a little color selector
panel as well, shown in the upper right. It contains all
the default colors in the .NET environment, as well as
all the tartan colors named in Table 1. You can also cre-
ate your own colors and add them to the list. If you click
on a color chip, its name is appended to the list of colors
in either the warp or weft window, depending on which
of the two radio buttons you've selected.

For a long time this was all T had. Then when I wrote
my intrepreter for AWL, I created the new form in Figure
5e (recall that AWL is Andrew’s Weaving Language,
which I described in detail in part 2). This has nine text
boxes. The first eight correspond one-to-one to the text
boxes in the main panel. The difference is that in the
main panel you enter explicit numerical patterns for the
warp and weft, whereas in the AWL windows you enter
AWL expressions. By clicking the button beneath each
box, the system translates the AWL into its resulting pat-

March/April 2003

tern, and copies that into the corresponding box in the
main form. That way you can see what your expression
translates to, while the AWL is still there and editable. A
ninth box on this form lets you enter an AWL expression
for the tieup.

I thought it might be fun to write a graphical editor
for AWL expressions, and you can see that window in
Figure 5d. Like most such editors, you can create and
delete nodes, drag them around, change the wiring,
and so on. Once you have a drawing you like, you iden-
tify which AWL expression window you want to send it
to, and push the send button to translate the drawing
into AWL. If you like the expression you've created, then
you press the button below that window as usual to
evaluate it and pass it to the main form. The graphical
editor is interesting to play with, but I eventually found
that I preferred to type and edit my AWL expressions
directly. You can see in Figure 5c the result of the
expression drawn in the graphical editor. The expres-
sion contains some redundant instances of the push
command, which doesn’t hurt things (nothing happens
if there’s nothing new to push).

Let’s move inside the code now. Programming this
digital loom was straightforward. Of course, the final
code’s structure reflects that I learned (the C# language)
as I went, but it works fine and the tasks are simple
enough that everything happens effectively, even with
a naive and blunt programming style.

Program highlights

I'll discuss the three most interesting bits of the pro-
gram: drawing the fabric, reading and writing WIF files,
and evaluating AWL expressions.

To draw the fabric, I start by finding the current win-
dow size (since you can grab it at a corner and make it big-
ger and smaller), and I compare this to the fabric size that
Iwant to draw inside of it. As Figure 6 shows, suppose the
weaving is a cells high, and we need b boxes to hold the
pattern along the bottom. I need to also include space
equal to one box at the top for a border, one between the
weaving and the pattern, and one more at the bottom for
aborder. I also use a half-cell of space between the weav-
ing pattern and the thread colors, resulting in a height of
a + b + 3.5 cells. I then use the same layout to find the
number of cells that are required horizontally.

From thisI can find the largest square’s size that I can
use for a cell that still fits in the window. Even though
the spacing specification for a given weave can change
the location and aspect ratio of the cells in the weave
itself, I treat everything as squares at this point.

Filling in the cells for the tie-up, pattern grids, and
row or column of colors is straightforward. I just draw
the grids and fill in the boxes where necessary—either
with the thread color or black and white for the patterns
and tie-up.

To draw the weaving itself, I proceed one cell at a
time. First I use the spacing information to determine
the cell location and size. Then I consult the thickness
and color for the threads at this cell to find the two rec-
tangles that fit into the cell. Finally, I consult the warp,
weft, and tie-up patterns using my weaving equation
(presented in part 1) to determine which rectangle is on
top. I draw the two rectangles in the proper order, and
then move on to the next cell.

The WIF standard defines the usual way to save weav-
ing information. Adhering to WIF means that my sys-
tem can trade weaving files with the commercially
available digital weaving systems, and I can also read
the many WIF files available on the Web.

WIF files are easy to write, but can be tricky to read.
The WIF standard lets you write out sections, or blocks,
of information in any order, so information that you
need to parse or interpret for one part of the file might
not appear until much later. Some sections don’t need to
exist at all.

There are two general approaches to handling this
sort of thing. The more efficient way is to first create a list
of pointers into the file that indicate where every possi-
ble section starts. If you save these as integer offsets from
the start of the file, you might initialize them all to —1.
Then you read through the file, and each time you
encounter the start of a new section you determine
which field it is, and set the corresponding pointer to
the current position of the file pointer in the file.

Once you've passed through the whole file this way,
you go to another routine that sets everything to a
default value, and then looks at the pointers in a fixed
order. You look for the section you want, and if it’s there,
you jump to it, read it, and overwrite the default. Then
you do the same thing for the next section and the next,
until you've read everything. Then you can evaluate all

n

u
a

u
b

[1]

of this data to create the weaving specification.

The other way to go is simpler but slower. As before,
you initialize all your data to defaults, and then look for
each section of the file in a fixed order, but you simply
reread the file from the start each time you need a new
section. This is slightly easier to write and debug. [wrote
my first WIF reader this way, with the intention of turn-
ing it into the more efficient version once I got it work-
ing. But WIF files are typically pretty small, and I found
that even this inefficient approach read almost every
WIF file essentially instantaneously, so I left it that way.

Parsing AWL expressions turned out to be easy, large-
ly because I defined it as a postfix language. I split up
the AWL expression into tokens separated by blank
spaces, and read each token one at a time, with no look-
ahead. If the token isn’t a keyword (or a symbolic short-
cut for one), it goes at the end of the list that’s currently
on top of the stack. If the token is a keyword, then I pop
the necessary arguments off the stack, process them,
and push the result back on top. When I'm done pars-
ing a valid expression, there’s only one thing on top of
the stack: a list of elements that’s ready to be copied over
into the main weaving window. You can get a copy of
my AWL parser written in C# for free from my Web site
at http://www.glassner.com. |

Further Reading

6 Counting up
the number of
cells required to
draw the weav-
ing window.

You can find thousands of traditional tartan plaids online. One
good place to start is http://www.house-of-tartan.scotland.net,
where you can search for tartans based on a sequence of colors, or
their traditional associations with Scottish clans, districts, and
regiments. You can find another list of tartans, complete with
photos of woven examples, at http://www.shetlandpiper.com/
tartan_finder. An extensive collection is available at http://www.
scottish-tartans-society.org, where you not only can see a picture of
each tartan, but the explicit color sequence for weaving it.

You can find the definition for the WIF file format, as well as
some samples in that format, online at http://www.mhsoft.com/

wif/wif.html.

You can get a free, public-domain copy of the C# source code for

my AWL parser in the file AWL.cs from my Web site,

http://www.glassner.com.

IEEE Computer Graphics and Applications

83

