
In my last column I discussed a problem faced by film-
makers who want to show simultaneous action hap-

pening in different places. If two or more locations are
near one another, we might be able to catch them all with
a single camera. But if the actions are happening far away
from one another, or a single image doesn’t capture
everything the way we’d prefer, we have a challenge.
One common solution is to use a split-screen effect,

where two or more images are shown simultaneously
and separated by a black bar, as Figure 1c shows.
Another common technique is to edit the piece togeth-
er in such a way that the audience realizes that what
they’re viewing sequentially (or in alternation) repre-
sents action that should be interpreted as simultaneous
in the world of the story.
I wanted to find another option, which would allow

me to show disparate events in a single frame, imaged
by different cameras in different places, yet all smooth-
ly joined together visually. I developed a technique that
I call the multicamera collage, or MCC. Figure 1d shows
how MCC could handle the split-screen example.
Figure 2 recaps the basic idea behind creating Figure

1d. The following summary is a brief overview of the
approach; you can find more details and discussion in
my May/June 2004 column.
To make a single image using the MCC, you first render

several views of your scene. You can make each render-
ing with any camera located in any position; the cameras
can even be custom camera shaders if they’re useful to
you. Figures 2a through 2c show three such images.
After running a program that processes the images,

load the resulting pictures up into any image-editing pro-
gram that supports layers, such as Adobe Photoshop or

Corel Painter. Then use any selection tool you like to
choose the pieces of each image you want in the final
frame. Place a black background behind your images to
fill in the holes. You can choose from the images any way
you like: pick one big blob from this camera, five little
blobs from another, and a circle from the third. There’s
no restriction on how many image pieces you can use for
each camera, or what the shapes of those pieces should
be. The result is a collage. Figure 2d shows one possible
collage for our example. At this point you can also cre-
ate an optional region image, which I’ll discuss later.
That’s it for your involvement. Just run another pro-

gram that processes the collage (as well as some other
files automatically created when you made your ren-
dered images) and then hand it back to your 3D model-
ing or rendering system to create a new, smoothly
interpolated image. Figure 2e shows the results for our
collage in Figure 2d.
If you’re working in animation, you can create as

many keyframes this way as you like. Each keyframe can
have a different number of cameras, a different number
of regions, and so on. In fact, keyframes need not even
have any cameras in common. Just choose the cameras
you want for each frame and draw the collages that you
like, and the frames in between will interpolate smooth-
ly just like the still images themselves.
Now that we’ve quickly reviewed the workflow, let’s

open the hood and look inside to see what programs are
involved and how they work.

Under the hood
The MCC is a collection of five programs: two shaders

and three standalone programs. The shaders capture
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1 (a, b) Two people having a chat in their local cafe. (c) Split-screen version of the scene. (d) Multicamera collage version of the same shot.



data from the rendering program when making the ini-
tial images, and supply new data for rerendering. The
standalone programs prepare the images for collaging,
process individual collages, and build in-between frames
for animation. Let’s run through the general flow again,
pointing out where each of these programs is involved.
For simplicity, I’ll assume we’re just making a single
frame, rather than an animated sequence.
Start off by rendering your scene from as many dif-

ferent points of view as you like, using your 3D system’s
built-in cameras. During this process, you tell the pro-
gram to use a custom lens shader, which I call the lens
writer. This writes an auxiliary data file during the ren-
dering process, saving information about each screen
ray fired by the renderer. When the frames are rendered,
run them through the camera taggerprogram. This mod-
ifies the pixels in each rendered image so that we can
later identify which camera was used to create each pixel.
Load up these modified images into any image-edit-

ing program that supports layers. Behind them, place a
black background. Using a selection tool, cut away the
parts of each image that you don’t want in the final, and
save the result as a collage. Now run another program—
called the lens builder—which creates a new file that
provides one ray per pixel to guide the rerendering
process.
Now open up your 3D scene again, but tell the ren-

derer to use a camera shader I call the lens reader, and
render the image. It reads the file created by the lens
builder to build rays that generate a new image that
looks like your collage, but with the black regions
smoothly filled in with scene views.
If you’re making an animated sequence, you’ll prob-

ably want to make several collage files at different points
in the sequence. You’d then run the in-betweener, which
creates one rerendering file per output frame. The pro-
gram smoothly interpolates the keyframe collages, pro-
ducing a smooth animation with your changing
cameras.
Let’s look at the details of these programs.

Taking shade
Shaders were invented by Rob Cook to break open the

traditional rendering pipeline. Shaders are little nuggets
of programming that tell the rendering system what to
do at various steps along the way of creating an image.
The MCC depends on a pair of custom (but easy to write)
lens shaders.
Most ray tracers let you plug a lens shader into the

pipeline. After the system has built an eye ray, but before

it starts using it to find illumination from the environ-
ment, it calls your lens shader. This little piece of code
can do anything: compute the square root of pi, simu-
late the flow of wind over a wing, or more commonly,
adjust the ray parameters. If there are several lens
shaders, they’re simply called one after another in the
order you specify.
Once a lens shader finishes its work, the system uses

the potentially modified eye ray to find the color associ-
ated with the ray’s corresponding spot on the film. If the
system wants to perform antialiasing, motion blur, depth
of field, or any other process that requires more eye rays,
it simply makes and traces them as usual. The lens shad-
er is called just before the ray goes into the world.
Len shaders typically have at least two sections: the

initialization routine and the shader proper. The ini-
tialization procedure is usually called at the start of each
new frame, and the shader itself once per ray.
The MCC uses two lens shaders. The lens writer is used

when you’re rendering the initial images of your scene,
which you’ll later use to create the collage. The initial-
ization routine for the lens writer creates a new file,
whose name is a combination of the camera number and
the frame number. For example, if we’re rendering
frame 5 from camera 3, the file might be called
frame0005camera03.txt. The initialization routine
saves the name of this file internally, writes out the
image’s width and height, and closes the file. In this dis-
cussion, I’ll assume that all the files are plain text. This
is a good choice during development and debugging,
since you can open the files and read them yourself.
When everything is working, it’s reasonable to use a
binary format, which is typically smaller than text and
faster to process.
Let’s return to our pipeline. During the image’s ren-

dering, each time the lens writer is called, it simply
opens up the file, appends to the end a plain-text line
containing the ray’s 2D screen location, 3D origin point,
and 3D direction vector, and then closes the file. Then it
returns and lets the system trace the ray as usual.
For convenience in later processing, I configure the

renderer during this step to create exactly one ray per
pixel while rendering these initial images. So if the
image has dimensions of w by h pixels, there are wh +
1 lines in the text file (the first line declares the image
width and height). Of course this means that the image
can have jaggies and other aliasing artifacts, but these
images are just for use in the collage and the artifacts
never show up in the final, rerendered output.
Let’s jump to the end of the MCC process, when we’re
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2 Recapping the multicamera collage process. (a–c) Three shots of a couple at a cafe. (d) Collage made from these images. 
(e) Interpolated result from multicamera collage.



rendering the new, interpolated image. The lens reader
carries out the lens writer’s process roughly in reverse. It
assumes that the lens builder program has been run
already. That program creates one file per frame, in the
same format as that of the lens writer: one line per ray,
containing the ray’s screen location, origin, and direction.
When the lens reader is initialized, it opens the file

for that frame (for example, frame 51 might be reren-
der-frame0051.txt). It reads in all of the ray descriptions
and saves them in local memory, then closes the file.
From now on, each time the lens reader is called, it

uses its input ray’s 2D screen location to access the data-
base of rays that it read. It uses the screen coordinates to
interpolate the input rays, as Figure 3 shows. I blend the
ray positions using linear interpolation, and the direc-
tions using direction interpolation (which I’ll discuss
later). I overwrite the origin point and direction vector
of the screen ray created by the system with this com-
puted ray, and then return it to the rendering system,
which follows it into the scene.
So although the renderer is generating eye rays and

setting them up for rendering, the lens reader overwrites
those rays before they head out into the environment.
The renderer doesn’t know that, of course, so it antialias-
es and does motion blur and everything else as usual.
The result is a picture in which every ray has been inde-
pendently placed and directed by the lens reader to cre-
ate the smooth scene we desire.
Let’s now look at the standalone programs I’ve 

mentioned.

Camera tagger
The job of the camera tagger is very simple: It over-

writes a few bits in every pixel of your original rendered
images with the number of the camera that created that
image.
For example, suppose we open a rendered frame

called frame0013camera09.tif, which tells us that the
image was rendered by camera 9. The camera tagger
reads each pixel in the image one at a time, and puts the
number 9 into the color value of every pixel.
I think of the low-order 2 bits of each color component

as together forming a single 6-bit binary number. The 2
low-order bits of blue correspond to the 2 highest-order
bits in the number, the 2 low-order bits of green are in
the middle, and the 2 low-order bits of red make up the
lowest-order bits of the number. In our example, camera
9 corresponds to binary 001001. So I’d put 00 in the 2
low-order bits of the blue color, 10 in the 2 low-order bits

of green, and 01 in the 2 low-order bits of red, and save
the pixel. I do this for every pixel in the image.
Of course, this can introduce some visible artifacts

into the image, such as color shifting and banding. But
these modified pixels are only used in the collaging
process, and don’t appear in the final, rerendered image.
As long as the image is still legible enough to be useful
in making the collage, no harm is done.
Since I’m using 6 bits, I can represent 63 cameras (as

we’ll see later, the number 0 is reserved to mean no cam-
era). I’ve never wanted that many cameras in a single
frame, but if you wanted more, you could just use more
bits. Taking 3 bits per channel, for example, would let
you encode 511 different cameras.

Lens remapper
The collage file is an image that contains two types of

pixels: those that are from the black background (that
is, they have 0 in all three color channels), and those
that are from a camera (so at least one of the lowest 2
bits in at least one of the color channels is a 1 ). Note that
the background black is different from black in one of
the camera images. For example, if camera 6 was look-
ing at a pitch-black object and thus originally wrote (0,
0, 0) in the RGB channels for some pixels, those pixels
would become (2, 1, 0) after the camera tagger went to
work (red = 10, green = 01, blue = 00, which go togeth-
er in the order 000110, forming the binary number 6).
So pixels with the color (0, 0, 0) mean no camera, and
those are the ones we’ll fill in.
The lens remapper’s job is to create a new input file

for the lens reader, giving it the location and direction of
one ray in the center of each pixel. The lens reader (our
lens shader in the final step) will interpolate these rays
as necessary for screen rays generated by the renderer.
The lens remapper is the largest program in the sys-

tem, and it’s where we create the visual look of the reren-
dered image.
The lens remapper starts by assuming that the pixels

in the collage that have a camera number associated
with them are pixels you want to see in the final image.
That is, the regions you selected to keep in the collage
should also appear in the output. So if a given pixel in
the collage is labeled with camera 5, then in the output
file the ray for that pixel will come from the text file
stored with camera 5, which gives the exact origin and
direction of the ray that was used for that pixel by that
camera.
On the other hand, pixels that have no camera asso-
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3 Schematic view of how camera rays are combined to create a new, interpolated ray for rerendering. Yellow rays
at the corners are our input. I interpolate pairs to find the blue rays, and then interpolate them to find the red ray.



ciated with them receive a computed ray. The compu-
tation is designed so that the rays sample the visual field
smoothly over the entire image. I do this by finding the
nearest pixel from each camera, and coming up with a
weight for those cameras, so the nearer ones make more
of a contribution than those far away. Then I go to the
text files for each camera, weight the rays associated
with those pixels by the given amount, and then add
them. The key is to remember that the text files let us
retrieve the ray information associated with every cam-
era and every pixel.
The first step in the process is to find the edges for

each camera, as Figure 4 shows. The edge-finder is pret-
ty straightforward. It marches through the collage
image, and calls a routine that returns true or false, iden-
tifying whether the pixel is considered on an edge.
The identifying routine begins by extracting the pixel’s

camera number. If the camera is 0 (that is, the pixel is
from the black background) the routine returns false.
Continuing on, if the pixel is on the outermost border of
the collage, the routine returns true. Otherwise, the rou-
tine compares the pixel’s camera number to the camera
number of its eight neighbors. If any of those eight cam-
eras are different, the routine returns true; otherwise, it
returns false. Figure 5 shows these tests visually.
When I find an edge pixel, I add it to a list of edge pix-

els for its associated camera. So later on, when I want to
look through all the edge pixels for any camera, I can eas-
ily access them all without any additional processing.
With the edge lists completed, I now start computing

weights. Let’s say that Ai(x, y) is the ray origin saved at
pixel (x, y) for camera i, and Di(x, y) is the ray direction
saved at pixel (x, y) for camera i. Let’s package this infor-
mation together as a ray Ri(x, y). The weighting process
involves finding a set of scalar weights that I can apply
to these points and vectors to create a new ray. For each
camera i, I find a scalar weight αi, and a particular pixel
(xi, yi), so the new ray R drawn from C cameras in the
collage is 

In other words, to find the ray at (x, y), I find a pixel
(xi, yi) for each camera i, get the ray information Ri for
that pixel from the text file for that camera, weight it by
αi, and add it into the running total for the new ray. Just
how the rays are scaled and added up requires a little
discussion, which I’ll get back to in a bit. For now, let’s
concentrate on the problems of finding the pixel we
want for each camera, and then the right weight for it.

I compute all of this information across the whole pic-
ture before I actually build the new rays, because I
process the weights after they’ve all been calculated.
One way to think of this is that if the input image has

dimensions w × h, then I build C2D data structures (one
for each camera). Each element of these data structures
contains a floating-point number (the weight α) and
two integers identifying the pixel (x, y) that should be
used from that camera to contribute to the pixel where
it’s located.
Let’s process a single pixel P from the collage, locat-

ed at (xp, yp). I first retrieve the pixel from the collage
and look for its camera value. If it has one (that is, the
camera number encoded in those low bits is nonzero),
then I know I want that output pixel to have exactly the
same ray as the one used by its camera. Let’s say it was
made by camera c. Then I set αc = 1and all the other αi

to 0. I also set the pixel coordinates in all data structures
for all the cameras to (xp, yp). The result is that when I
go to build the ray for this pixel later, the ray used by
camera c at this pixel will be what I compute. Then I
move on to the next pixel.
On the other hand, if the pixel has no camera, then I

need to work harder. First, I scan through the edge list
for each camera, and locate the edge pixel that’s nearest
to P. The coordinates of that pixel get written into the
data structure for each camera. Figure 6 (next page)
shows this idea. 
Now I need to compute the weights. For this, I use the
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4 Edge images
from the cam-
eras in Figure 2.

5 Finding the edges. Red pixel: If a pixel is in the back-
ground, it’s not on an edge. Yellow pixel: If a pixel is in
a camera but on the border, it’s an edge. Cyan pixel: If a
pixel is on the border of a camera region and black, it’s
an edge. Green pixel: If a pixel is on the border of two
camera regions, it’s an edge.
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multipoint weighting technique I described in my
March/April 2001 column, “Tricks of the Trade” (see the
“Further Reading” sidebar for pointers to book versions
of this and other columns). To summarize this idea quick-
ly, let’s call each camera pixel ci for i = [1, C]. I start by
finding the distance from P to each of these pixels: 

di = |P − ci|

Now I normalize these so they sum to 1. I call the nor-
malized distances gi:

Now I find a strength vi that tells me how much each
of the pixels is affecting P:

To get our weights wi, we just normalize the vi:

Although the weights produced by this method are
continuous across the image, they’re not necessarily con-
tinuous in their first derivative. Figure 7 shows an exam-
ple of the weight applied to a camera as we move from a
region where that camera is present into the black zone
next to it. Any first-derivative discontinuities in the
weights could show up as artifacts in the final image.
To smooth things, I apply a little bit of filtering. Each

filter runs on the weights for each camera independent-
ly. It’s important to double-buffer these filters, which
means that I process all of the weights and compute new
values for the entire camera before I write them back.
First I blur the weights using a box filter of radius 4.

This just means that for each black pixel P, I add all of the
weights applied to the 9 × 9 block of pixels centered
around P, divide by 81, and use that for the new value
at P. (For boundary pixels, I only divide by the number
of pixels that are actually in the image and get added to
the average.)
Then I apply an ease curve to the weights. This is sim-

ply an S-shaped curve that smoothes the edges a bit
more. Returning again to my March/April 2001 column,
I use the ease curve described there with a premapped
control value of 0.75 (see Figure 8). After this I blur with
another box filter of radius 3, which smoothes out any
remaining rough edges.
I then pass through each pixel one at a time, and

renormalize the weights so that they sum up to 1 again.
To do this, I just add up the weights and divide each one
by that sum.
Now that I have everything I need, I just run through

the pixels and apply the formula we saw at the start of
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Further Reading
In my last column (see the May/June issue of IEEE Computer

Graphics and Applications) I offered a variety of references on topics,
from the optics of pinhole and complex cameras to the artistic
school of Cubism. Please refer to that column for further details on
any of those topics.

Shaders play a key role in this technique. The seminal paper on
shaders is R.L. Cook’s “Shade Trees,” Proc. Siggraph, vol. 18, no. 3,
1984, pp. 223-231.

I’ve referred in the text to a number of my previous columns. My
discussion of vector interpolation and the formula for computing
circular interpolation appears in my article “Situation Normal,” IEEE
Computer Graphics and Applications, vol. 17, no. 2, Mar./Apr. 1997,
pp. 83-87. My discussion of camera shutters appears in “An Open
and Shut Case,” IEEE Computer Graphics and Applications, vol. 19,
no. 3, May/June 1999, pp. 82-92. Multipoint interpolation and the
burp algorithm both appear in “Tricks of the Trade,” IEEE Computer
Graphics and Applications, vol. 21, no. 2, Mar./Apr. 2001, pp. 80-
87. These columns are now all available in book form, where they
have been revised and expanded. “Situation Normal” is chapter 5
of Andrew Glassner’s Notebook (Morgan-Kaufmann, 1999), and the
other two columns are chapter 1 and chapter 8, respectively, in
Andrew Glassner’s Other Notebook (AK Peters, 2002).

I wrote this implementation of the multicollage camera (MCC)
with a variety of software tools. I wrote all of the programs in C#
using Microsoft’s .NET programming environment. To make the
images, I used discreet’s 3ds max 6 production system. I wrote my
lens shaders for mental images’ mental ray 4.3, which I used to
create the rendered images. I created the collages in Adobe
Photoshop CS.

I’ve been thinking about these ideas for a long time. I wrote my
first implementation in 2000 when I worked at Microsoft Research.
A summary of my work at that time is available under the following
listing: A.S. Glassner, Cubism and Cameras: Free-Form Optics for
Computer Graphics, tech. report MSR-TR-2000-05, Jan. 2000,
available online at http://research.microsoft.com/research/pubs/
view.aspx?msr_tr_id=MSR-TR-2000-05).

α1 α2 α3

6 Schematic of the weighting process.



this section, weighting and combining the camera rays at
each pixel to create a single new ray. I said that I’d return
to how that’s done later, and now the time has come.
Weighting and adding the ray’s origins is a snap: I just

scale the three coordinates by the weight and add them,
just like interpolating any real numbers. Since the
weights sum to 1, no further normalization is needed:

The direction vectors are trickier. As I discussed in my
March/April 1997 column, “Situation Normal,” if we
simply interpolate the vector coordinates independent-
ly and then renormalize the result (as we do in Phong
shading), we don’t quite get circular interpolation. What
we want is to interpolate the direction vectors as vec-
tors, not points. In that column I gave a formula for inter-
polating two unit vectors P and R: 

where α is our interpolating variable that sweeps from
0 to 1, ψ = αθ, and θ is the angle between the two vec-
tors: θ = cos−1(P ⋅ R). That’s fine when only two vec-
tors exist, but here we need to combine C vectors, which
will usually be three or more.
The solution comes from my March/April 1997 col-

umn, where I presented a method for bilinear uniform
interpolation called burp. I’ll summarize the essential
details here. We want to find a linear sum P as

using a series of two-point interpolations. We can
decompose this result into several small pieces. We want
to find P = r0:

We’ll start by computing rn−1 and then working our

way back up to r0:

You can find more details on this technique, along
with an example in the original article (see the “Further
Reading” section). Now that I have both the ray origin
and direction for this pixel, I simply write these six num-
bers out to a plain-text output file. The file has one line
per ray, and one ray per pixel. This is the file that’s read
in by the lens reader shader to make the final image.

Regions
The previous algorithm does a pretty good job on

some images, but it can make mistakes on others. The
essential problem is that the algorithm finds the new
ray by combining a ray from every camera. But there are
times when we don’t want all of the cameras to con-
tribute to a pixel.
For example, consider Figure 9. This collage uses just

a few simple colors to represent camera regions. I’ve
denoted which pixel we’re interested in computing
weights for by coloring it red. A nearby camera, in yel-
low, would normally contribute its nearest pixel, shown
in green. But in this collage, we probably don’t want the
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yellow camera to contribute at all, since there’s anoth-
er camera between the red and green pixels. In this case,
we’d like the yellow camera to make no contribution to
the red pixel.
To bring this about, you can draw a region imagewhen

you make the collage image. Figure 10 shows a typical

region image. It’s just a bunch of areas of arbitrary
shape, each filled with a different color.
When there’s a region image available in the same

directory as the collage image, I use it to guide the selec-
tion of pixels from each camera. When I start process-
ing a pixel P, I first check to see what region it’s in (I just
use the color of that pixel in the region image). Now
when I run through the list of edge pixels for each cam-
era, I retrieve the region for each pixel, and if it’s not the
same as the region for P, I skip it. If I get to the end of
the list and I haven’t found any pixels from that camera
in the same region as P, I just mark that camera as a non-
participant for that pixel. If there’s no region image, then
implicitly every pixel in the picture is in the same region.
The shapes in the region image can have any shape

or size, they can be filled with any color, and there can
be any number of them. Just draw them as you like, but
use a drawing tool that doesn’t antialias your selection

(otherwise those blended pixels will
each be their own 1-pixel-large
region).
Regions aren’t a perfect solution,

though, because they can introduce
visible discontinuities in the final
image. Figure 11 shows the bound-
ary between two regions. In one
region, we’re interpolating cameras
1 and 2, and in the next, cameras 1
and 3. To minimize the effects of this
problem, I use my eye when I draw
regions, and try to avoid creating
sharp edges. The filtering and blur-
ring steps that I apply to the weights
help smooth out this crease, but I’d
rather not create it in the first place.

Details
I implemented this system using

discreet’s 3ds max 6 and mental images’ mental ray 4.3
rendering system that ships with it. Mental ray is good
at taking advantage of parallelism, and will make use of
as many processors as it can find. On my home comput-
er, I have two Pentium processors.
Running two processors at once caused me endless
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9 In this collage, we want to compute weights for the
pixel marked in red. Although the pixel marked in green
(belonging to the yellow camera) is near the red pixel, it
probably shouldn’t contribute to the red pixel at all.

10 Using hand-
drawn regions
to control
which cameras
contribute to
which pixels in
Figure 9.

11 Possible problem with regions. Camera 1 is on the left, camera 2 is in the upper right, and
camera 3 is in the lower right. The upper and lower edges of this boundary join cameras 1 and
2 and 1 and 3, respectively. This would probably display a crease if the weights weren’t
smoothed.



headaches while I was trying to get my lens writer shad-
er to work, because different but parallel copies of the
shader were trying to write to the same output file at the
same time. Once I realized what was happening, I took
the easy way out and put the code that writes to the file
inside a locked region, which means that only one
instance can be running at a time. The locked region
opens the text file, writes a ray, then closes the file. It’s
inefficient and you can definitely see a slowdown, but
because I’m only firing one ray per pixel, and this is just
a testbed, this quick-and-dirty solution was okay.
It did mean that I had to precede each line with the

(x, y) coordinates of the pixel being written, since they
could be written in any sequence. The lens remapper
uses those coordinates to make sure the correct data
goes into the correct pixel.
Similarly, the lens reader initialization routine is

locked, because I want to make sure that it finishes read-
ing in the data before any rendering occurs. After that,
there’s no locking, since the reader is only looking up
data from its database of per-pixel ray information,
which remains constant.
It’s important to use selection tools that don’t antialias

when building the collage and region images. The rea-
son is that antialiasing versions of these tools typically
blend nearby pixels to create a smooth edge. In the col-
lage, such blending will mess up the camera values that
we’ve written to our pixels, which will create extrane-
ous cameras and misidentify pixels on the edge. In the
region image, antialiased pixels will become tiny 1-pixel-
large regions, each of their own color. The collage and
region boundaries should be hard edged, and very like-
ly will show ugly jaggies. As with the other image arti-
facts we’ve seen, this has no effect on the final image.

Examples
Let’s look at some examples of the MCC system in

action. Figure 12 shows two images from a chase in an
alley. The man with the crutch is being run down by
agents from both ends of the alley, while someone
watches from high above the building he’s trying to
enter. Figure 13 shows four images of this scene, and
Figure 14 shows a collage built from them. Figure 15
shows the rerendered output.
Figure 16 shows a scene from A Bad Night at Big Light.

Poor Timmy is hanging onto the lighthouse by one hand
while a skeleton reaches for him from below. Hobbled by
a broken ankle, Sally watches from the side as her two
dogs attack the skeleton. Figure 17 shows several dif-
ferent MCC collages for this scene.
Finally, Figure 18 shows a scientist working late in her

lab one night. Figure 19 shows two different MCC col-
lages for this scene.
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12 Two views
of a scene from
my short film,
Rundown.

13 Four rendered images of the scene in Figure 12.

14 Collage
built from the
images in
Figure 13.



Animation
This algorithm is frame based, which makes it easy to

use for animation. Think of the creation of collage
images like the creation of key points: You create one
where something interesting is happening, and let inter-
polation handle everything in between.
Suppose that you want to create a 500-frame ani-

mated sequence using eight cameras. Let’s say you cre-
ate collages at frames 0, 150, 400, and 500. The system
processes those four collages and creates four lens read-
er files named, for example, rerender-frame000.txt,
rerender-frame150.txt, and so on.
Then the in-between program uses the ray informa-

tion at those frames to compute lens reader files for all
the other frames, saving one text file per frame. Now
you simply render the animation using the lens reader
shader. When it’s initialized at each frame’s start, it reads
in the data from the corresponding file.
If you want to include motion blur, you can read in

pairs of frame files for each rerendered image, and use
each ray’s time value to interpolate between the data in
the two frames.
Figure 20 shows two keyframes for a 90-frame shot

starring our couple from the cafe. These keys corre-
spond to the first and last shot frames. Figure 21 shows
several of the intermediate frames created to complete
the shot.
Figure 22 (see p. 94) shows the five keys used to

create an 800-frame shot from Rundown. The agents
are running toward Sharky (the man with the
crutch) as he tries to get the door open. Figure 23
shows several of the intermediate frames created
from these keys.

Discussion
Note that the MCC technique doesn’t slow down the

rerendering step when we produce the final output
frames. There’s a short pause at the start of each frame
to read in the database of rays, and then there’s a bit of
work done by the lens reader to compute each new eye
ray. But this small amount of computation is insignifi-
cant compared to the overall task of rendering an image.
In my nonoptimized, testbed implementation, I mea-
sured a quarter-second pause at the frame’s start to read
in the database; the processing performed by the lens
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15 Rerendered
MCC version of
the collage in
Figure 14.

16 Scene from A Bad Night at Big Light.

17 Four collages of the scene in Figure 15.



reader during the actual rendering process was too
small to detect.
I typically build my collages at a smaller resolution than

the final output. Because the lens reader interpolates the
input rays, everything is still smooth even when the out-
put resolution is larger than it is in the collages and regions.
I usually work at one quarter of the final output size, which
means my files are one-sixteenth the size of the final out-
put images. This means the MCC files consume less disk
space, and processing is faster. I only work at higher reso-
lutions when there are fine details in the collage or region
images that I want to preserve in the output.

The MCC technique raises some interesting artistic
and technical ideas. Suppose we have a collage where
the top half is one rendering, and a small blob appears
somewhere on the bottom edge, as in Figure 24a. What
should happen in the lower corners? The general prob-
lem is that outside the convex hull of the renderings, we
don’t have data to interpolate. One reasonable solution
might be to use some kind of parametric extrapolation.
An alternative would use an iterative approach that
“grows” extrapolated data beyond the interpolated con-
vex hull using incremental techniques. My general solu-
tion to this is to render images slightly larger than I need,
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18 Scientist working late into the night.

19 Two MCC versions of Figure 17. 20 Two key frames for the first and last frame of a 90-
frame sequence.

21 Five intermediate frames from the sequence created by the two keys in Figure 20. These are frames (a) 15, (b) 30, (c) 45, (d) 60,
and (e) 75.

(a) (b) (c) (d) (e)



so that I can always include a frame of in-camera pixels
along the outermost border of my collages, as in Figure
24b. After my new frames are computed, I crop them
and discard the border.
I’ve thought about building a painting interface on top

of the rendering system. Imagine starting with a blank
image, selecting a camera, and then painting over the
image. In this approach, the camera is rendered and
immediately displayed where paint is placed. The direc-
tor can work with these image regions like camera view-
ports in the rendering system: They can be moved
around, cut, pasted, and changed in shape. The director
can select controls like those in the rendering interface,
and directly change the camera’s location, direction, field
of view, and so on. The system could produce low-reso-
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22 Five key
frames for an
800-frame shot
from Rundown.
These are
frames (a) 0, 
(b) 200, (c) 400,
(d) 600, and 
(e) 800.

23 Eight intermediate frames from the sequence
created by the five keys in Figure 22. These are frames
(a) 50, (b) 100, (c) 150, (d) 250, (e) 300, (f) 350, 
(g) 500, and (h) 700.

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)



lution interpolation results in as close to real time as pos-
sible; when the director ceases to paint for a moment,
the system takes the idle time to compute an ever-denser
smattering of interpolated pixels, giving an ever-better
impression of the final result. The director could then
respond immediately and adjust the cameras and ren-
derings as desired. This might be more convenient than
building a collage from prerendered images.
The MCC approach computes the pixels missing in the

collage by ray tracing a synthetic environment. An alter-
native approach would use image-based rendering (IBR)
to retrieve environment data from scene images. The
director could start the process with rendered images
built from the IBR data, or with real photographs taken
on a scene, where another program takes the camera cal-
ibration information and writes the ray data that corre-
sponds to the camera’s image. If during the interpolation
phase the MCC algorithm needs pixels that aren’t avail-
able from the IBR data set, it could tell the user where to
place and direct a camera to gather the missing imagery.
I think we could integrate both IBR data and synthetic
3D renderings in the same scene, either mixing them
seamlessly for a single continuous image, or deliberate-
ly making it clear which is which for artistic reasons. �
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(a)

(b)

24 (a) Blob
problem. How
do we find
weights for the
pixels in the
lower right
corner? (b) My
solution is to
always include a
frame of camera
pixels in the
collage.
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