Solar Halos and Sun Dogs

rew Glassner’s Notebook

http://www.research.microsoft.com/research/graphics/glassner/

One of the things I love about computer graphics is
the sheer variety of topics we work with. When I
started studying computer graphics, I expected to learn
some physics, mathematics, and computation, but
gradually I discovered that our field embraces physiol-
ogy, art technique, perception, and more. I continue to
enjoy graphics because I love the steady flow of new
ideas drawn from the sciences and the arts.

In this column, my goal is to bring up topics I think
vou will find interesting and discuss how they make use
of, and sometimes extend, traditional computer graph-
ics tools. [ will try to discuss topics that the typical CG&A
reader will find intellecrually stimulating. [ will often
skip over the exhaustive detail nec-
essary in formal technical papers,
leaving it to you to fill in the blanks
(but I'll try to make sure the blanks
aren’t too big). In the same spirit,
won't present many detailed algo-
rithms or general graphics tools; Jim
Blinn does a splendid job of that in
his excellent column.

I'll try to provide a lot of informa-
tion, but I'll leave many issues for
you to think about (sometimes I'll
point them out along the way). I'll
also draw on whatever graphics
tools are appropriate to the job at
hand. If I seem to take for granted
something from computer graphics
that's unfamiliar to you, it can prob-
ably be found in the standard texts.
I'll also provide a bibliography with
each column for further reading on
that column’s subject.

My inaugural topic is something
with which we are all familiar: the
beautiful displays of light in the air
around us. More specifically, I will
talk about the elegant mechanisms
that bring about the striking atmos-
pheric effects associated with solar
halos.

Solar halos
If you walk outside on a sunny

winter day when there is moisture in the air, you might
notice a bright circle surrounding the sun, as in Figure 1.
Thisis a solar halo: it has a sharp inner edge located about
22 degrees away from the center of the sun, then it fades
out. Sometimes only fragments of the halo are visible,
Jjust as sometimes one only sees an arc of a rainbow.
Ilive in the Seattle area, where [ have frequently seen
small pieces of the 22-degree halo to the sides of the sun,
as in Figure 2. Referred to as “sun dogs” (formally called
parhelia), these small fragments of bright color seem to
Jjust hang in the sky, unrelated to the sun or any other
object. Also visible in Figure 2 is the upper tangent arc,
so named because it is tangent to the top of the 22-
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1 The solar halo
is a bright circle
surrounding the
sun.

Photo by Robert
Greenler

2 sun dogs, or parhelia, are small
pieces of the solar halo seen off to
the sides of the sun. Here the sun
dog appears on the horizon, to the
right of the sun. The 22-degree halo
and upper tangent arc are also
visible.

Photo by A. James Mallmann
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3 The circumscribed halo occurs
when the upper tangent arc (also
visible in Figure 2) wraps around
the sun and ultimately joins the
lower tangent arc. You can see it
most clearly at the left and right
sides of the 22-degree halo.

Photo by Robert Greenler

4 Hexagonal ice
crystals can take
the form of

(a) a plate or
(b) a pencil.

degree halo. As the sun rises, this upper arc wraps
around and ultimately joins the lower tangent arc to
form the circumscribed halo, visible in Figure 3. Finally,
on rare occasions you can see a dim, large, 46-degree
halo centered at the sun. Although you can see some
color effects in these phenomena, they are not rainbows.
Rainbows are a complex subject, which I leave for
another time.

Asingle, simple mechanism is responsible for all these
solar phenomena. Although people have been drawing
and hypothesizing about solar halos and sun dogs and
such for many years, the pioneer who developed a solid
quantitative demonstration of their origins is Robert
Greenler, a professor of physics at the University of
Wisconsin, Milwaukee. He and his colleagues started
publishing the results of their investigations in the
1970s, and he recently wrote a marvelous book sum-
marizing their work." In this issue, I present the essence
of Greenler’s elegant approach. In my next column, I
will show how to generalize it to include full-color sim-
ulations, which involves bringing in some tools more
familiar to computer graphicists.

Sunlight and ice

Greenler’s basic hypothesis is that solar displays arise
from the interaction of sunlight with clouds of simple ice
particles. We're all familiar with the tendency of ice to
crystallize in six-sided forms, as in snowflakes. But the
humbler hexagonal prism, shown in Figure 4a, is all we
need to bring about the effects discussed above, Actually,
we will find it useful to distinguish two forms of the crys-
tal: the plate (in Figure 4a), and the pencil (in Figure 4b).
Iconsider a crystal to be in the pencil form when the ratio
of length to radius exceeds about 2. (Toward the end of
the column you'll see why I put the dividing line there.)
According to Greenler’s hypothesis, all the solar phe-
nomena mentioned here result strictly from light reflect-
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ing from and refracting through
these little hexagonal ice crystals as
they take on different shapes and ori-
entations.

To duplicate Greenler’s results,
we need to make a bunch of simpli-
fying assumptions, many of which
will be removed in the next column.
Physicists are famous for simplifica-
tions. There’s an old joke about a
physicist who was asked to deter-
mine exactly how horses run. His
first step was to simplify the prob-
lem—he promptly began studying
the physics of a spherical horse. But used with restraint,
simplifications let us begin our attack on a problem, and
if they’re well chosen, let us focus on the most impor-
tant aspects of the problem first, leaving details for later.
We will follow that course here.

First, we will ignore reflection altogether, and con-
sider only light that travels through the body of the crys-
tal. Second, we will ignore all effects that could serve to
diminish the energy of the light as it interacts with the
crystal. That means we’ll ignore Lambert’s law where
the light strikes the crystal, Fresnel's law both where the
light enters and leaves the crystal, absorption within the
crystal, and polarization. Third, we will ignore all but
first-order effects; that is, we will pretend that a given
ray of light leaves the sun, interacts with exactly one
crystal, and then reaches our eye—none of the light
involved in this step ever encounters another crystal.
Finally, we will assume a thermally uniform and empty
atmosphere, where light travels in straight lines and is
never scattered or absorbed by airborne particles. With
these simplifications, we can begin to make our first
approximation to the solar halo.

Building a solar halo

We'll begin by studying plate crystals with a thick-
ness-to-radius ratio of about 1.5. Assume that they’re
uniformly distributed in a cloud between us and the sun,
and that the wind is kicking up, so they’re all tumbled
every which way, What would we see if we looked at the
sun through a cloud of these crystals?

The most straightforward approach might be to build
a 3D model of one crystal, instance it a few tens of thou-
sands of times throughout the cloud, then ray-trace it.
This probably would work, but very slowly. When
Greenler first studied this problem in the 1970s, the
machines were much slower than today’s, so he was
forced to find a more efficient approach. He invented a
technique that is so elegant, I will make it our starting
point.

Greenler’s idea was to model a single prototype crys-
tal, then give it a random orientation. He finds where
the crystal has to be in space to refract light back into
our eyes and marks that direction as the source of light
energy. Then he returns to the prototype, picks a new
random orientation, and finds its new position. Let’s
look at this in a bit more detail.

First we build a prism with hexagonal top and bottom
faces and rectangular sides. I chose to build mine in a



left-handed coordinate system, as in Figure 4a. To sim-
ulate the wind’s effect, we rotate this crystal around all
three axes into a random orientation. Then we create a
ray of light that starts at the sun and ultimately strikes
this crystal. We follow the ray forward as it refracts upon
entering the ice and refracts again when leaving. If we're
to see this outgoing light, then we must be looking at
the crystal along the direction of the outgoing light, as
shown in Figure 5. In other words, the final direction is
a source of light energy. So we add into an accumulat-
ing image a little bit of light coming from that direction.
This approach shares a common spirit with Whitted’s
1980 approach to ray tracing, where he suggested fol-
lowing rays backward from the eye into the scene.
Figure 6 shows the result of this simulation for 40,000
light rays, crystals with a thickness-to-radius ratio of 1.5,
and a sun at the horizon (so technically we would not be
able to see the lower half of the figure). My simulations
use a viewing angle of 180 degrees, so the entire visible
hemisphere is projected into the image (like pho-
tographing the world reflected by a shiny sphere, as in
Figure 2). In this figure, we can see energy from both the
22-degree halo and the 46-degree halo. Both halos have
the right form: an abrupt inner edge at the correct angle,
trailing off to the outside. The dots are color-coded fol-
lowing Greenler’s suggestion that different transport
paths through the crystal give rise to different effects.

Paths to enlightenment

There are five different types of transmission paths
through the crystal, illustrated in Figure 7. I call the top
and bottom hexagons the lids and the six rectangular
faces the sides. If light enters through a lid, it can come
out through the other lid (so I call this type of path LL)
or through aside (LS). If it enters a side, it can come out
through a “direct neighbor,” which is a side directly adja-
cent to the one it entered (SD); a “far neighbor,” which
is next to a direct neighbor (SF); or the opposite side
(S0). These are bi-directional paths; transport from a
side to a face is indistinguishable from light going from
afacetoaside. In the simulations, I color coded the path
taken by each ray: LL is red, LS is cyan, SD is green, SF
is yellow, and SO is magenta.

Let's think about what these paths represent. Light
following an LL path enters a lid, refracts, strikes the
otherlid, refracts again, and exits in the same direction
as itentered. You can prove this to yourself with a little
geometry, using the fact that the two lids are parallel.
So if we look directly at the sun, we would expect all the
LL rays to land right on top of one another, in the center
of the sun. In Figure 6, all LL paths are red, and theyall
land in the center. The same analysis holds for the SO
paths, since again we have a ray entering and leavirig
through parallel faces; the red dot in Figure 6 represents
them as well. Paths connecting neighbor sides (SD) can’t
occur in this kind of crystal. To prove that to yourself,
assume an index of refraction of 1.33 for ice and con-
sider that to exit through a direct neighbor, the trans-
mitted ray must make an angle of greater than 60
degrees with the normal of the incident face, (If that
doesn’t do the trick, think about the critical angle at an
air-ice interface.) So LL and SO paths are all the same,

5 To see light leaving a crystal, we
must be looking at the crystal along

\‘ the direction of the outgoing light,
\

and SD paths can't happen, leaving just LS and SF. And
as we can see from Figure 6, it does seem that the LS
paths (in cyan) are responsible for the 46-degree halo,
and the SF paths (in yellow) build the 22-degree halo.
The 46-degree halo in Figure 6 seems less densely
populated than the 22-degree halo. In fact, it's far less
common to see the larger halo, probably because it’s
dimmer. How much dimmer, though? Keeping in mind
that we decided to ignore energy effects, we can still
learn something just by considering how many rays take
each of the possible paths. Figure 8 shows the results of
sending 20,000 rays through a crystal cloud for differ-
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6 The result of
the simulation
for 40,000 light
rays, crystals
with a thick-
ness-to-radius
ratio of 1.5, and
the sun at the
horizon,

7 The crystal
has five
different
transmission
paths for light,
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8 The results of
sending 20,000
rays through a
crystal cloud for
different sizes
of randomly
oriented plate
crystals and
different
elevations of
the sun. (a) The
sun at 0 degrees
above the
horizon, (b) 30
degrees, and ()
60 degrees.

In the graphs
the thin solid
line=LL, the
thin dashed
line=LS, the
thick solid
line=SF, and the
thick dashed
line=S0.
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ent sizes of randomly oriented crystals and different ele-
vations of the sun. At sunrise (or 0 degrees of elevation),
using crystals of thickness 1.5, we find that about 4,600
rays take the SF path and only about 870 take the LS
path. Considering also that the LS rays are much more
spread apart, it seems that the simulation correctly sug-
gests that the 46-degree halo receives fewer rays per unit
visible area than its 22-degree companion.

So far we've assumed random orientations for the
crystals because of the presence of a strong wind. Butif
the wind calms down, then crystals will tend to fall with
their hexagonal sides parallel to the ground, like a piece
of paper fluttering to the floor. In Figure 9a, I've restrict-
ed the orientation of the crystals to only 7 degrees plus
or minus on the X and Z axes (refer to Figure 4), though
they are free to rotate about the Y axis. The yellow arcs
at the left and right are sun dogs. The 46-degree halo
here is made up of six different arcs, now distinguished
because of the limited crystal orientations. In Figure 9b
I've extended the X and Z rotations to 20 degrees in
either direction, and everything begins to spread out
and come closer to complete halos.

So far, we've only looked at the sun on the horizon,
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but it turns out that the phenomena due to plate crys-
tals don’t change much as the sun rises.

The plot thickens

Letting the crystals return to random orientations,
what happens if we thicken the erystals, turning them
from plates to pencils? The graphs of Figure 8 show that
for ratios below about 1.5, the LL paths dominate. This
makes sense, since the lids are the largest faces in the
crystal. Above that ratio, the SF and SO paths become
more common, as the side faces grow larger. The LS
paths have a small peak around 1.5, so that size best
shows the 46-degree halo—that’s why I chose a ratio of
1.5 for the earlier figures. If we enlarge the crystals toa
ratio of 6, as in Figure 9¢, then the number of rays that
contribute to the 46-degree halo drops dramatically.

As before, let’s now move from a windy to a calm day.
Unlike the plate crystals, pencils fall with their rectan-
gular sides facing the ground, like a log in a river. The
simulation in Figure 10a shows crystals with a length-to-
radius ratio of 8 (the small circle marks the location of
the 22-degree halo). They fall with their long axis par-
allel to the ground, but are free to rotate about the other
two axes. Here we see the upper tangent arc effect asin
Figure 2. As the sun rises, the upper and lower tangent
arcs begin to wrap around the 22-degree halo. Figures
10b, 10c, and 10d show the results with the sun at 11
degrees, 30 degrees, and 50 degrees; as the sun rises,
the circumscribed halo comes ever closer to the 22-
degree halo.

Implementation and notes

If you're interested in replicating these figures and
experimenting with crystal formations, it isn’t difficult;
the whole program isn’t much more than a simple ray
tracer. I'll sketch out my implementation and mention a
couple of notes.

I place the camera at the origin, looking down the pos-
itive Z axis, and place the sun at infinity on the positive
Z axis. The crystal is originally centered at the origin, is
assigned an orientation, and then gets moved into posi-
tion on the unit hemisphere in front of the camera, In
these simulations I use a viewing angle of 90 degrees—
the most fishy of fish-eye lenses without having eyes on
the back of your head! It's a bit extreme, but it allows
me to see big effects, like the 46-degree halo (and the
light that fades out from it). It also makes it easy to plunk
down a dot in the right place; if the normalized direc-
tion vector of the ray arriving at the eye is (x, y, ), you
can just put a point at (—x, —y). As the sun rises, I like to
keep the sun in the center of the image; I just rotate
everything down to the horizon before plotting.

The main loop in the program picks an orientation
for the crystal, rotates it into place, traces aray, and plots
the ray’s outgoing direction. Then I pick a new orienta-
tion and repeat. To orient the crystal, I pick some ran-
dom angles and build a rotation matrix. Because it’s
pure rotation, [ use the same matrix to transform both
the points of the crystal and the normals.

To start a ray, I pick a “goal” point. This is a point in a
disk of radius 1, centered at the origin, lying in the X-Y
plane. Then I find the direction back to the sun. Because
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the sun is so far away, I treat it as a
point light source generating parallel
illumination rays. Since [ assume the
sunrises in the ¥-Z plane, the vector
pointing from the goal to the sun is
(0, sin(0), cos(0)), where 8 is the
angle of elevation of the sun. I push
the goal point back along this direc-
tion by a length of 2, or twice the
thickness, whichever is larger—this
is just to make sure that [ start out-
side the crystal. This transformed
goal point is the origin of the ray, and
the ray’s direction is the opposite of
the direction in which I pushed it.
The first ray-object test is to find

..

9 Orientation of the crystals is
restricted to +7 degrees on the X
and Z axes (a). The yellow arcs at
left and right are sun dogs. The X
and Z rotations have been
extended to 20 degrees in either
direction (b), resulting in more
complete halos. Enlarging the
crystals to a ratio of 6 (c) causes the
number of rays contributing to the
46-degree halo to drop
dramatically.

10 The simulation shows crystals
with a length-to-radius ratio of 8
and the sun at 22 degrees (a),
which fall with their long axis
parallel to the ground in the
absence of wind. With the sun at 11
degrees (b), we see the arcs begin
to wrap around. With the sun at 30
degrees (c) and 50 degrees (d), the
circumscribed halo comes closer to
the 22-degree halo.

outif the ray strikes the crystal, since
the crystal will not occupy the entire
unit disk. If the ray misses, I just dis- (© (@)

card that orientation and start the
loop again. Otherwise, I follow the
ray through the crystal using standard ray-tracing tech-
niques. [t’s important to keep the selection of the goal
point and the rotation of the crystal decoupled; if they
correlate, it will introduce visible artifacts into the results,

The hexagonal prism is a convex solid of convex faces.
For convex faces, I've always liked the enclosure method
for the point-in-polygon tests. For each edge of each
polygon, I build a wall—a plane perpendicular to the
plane of the polygon, passing through the edge, and
pointing inwards. When I find the intersection of the ray
with the plane of the polygon, I test that point against
each of the plane equations that make up the walls. If
it's on the positive side of all the walls, the point is with-
inthe polygon. As scon as it's on the negative side of any
wall, you can quit the test.

The only thing left is to pick a wavelength for the sim-
ulation, compute the index of refraction of ice at that
wavelength, and start orienting crystals.

1 built a small pushbutton-style interface that allows
me to set global parameters such as the number of rays
to trace, the thickness of the crystal, and the angle of
the sun. [ can select which paths I want to have plotted,
the initial orientation of the crystal, and the range of
random rotations that can be applied once it’s been posi-
tioned. These two steps let me place the crystal proper-
ly (for example, the plate with hexagon side down, or
the pencil with a rectangular side down), then constrain
how much the wind can cause it to rotate. When a run
is complete, I print out some statistics, such as the num-

ber of rays that followed each type of path and the num-
ber of points plotted. I also keep track of how many rays
underwent total internal reflection (TIR) within the
crystal and simply extinguish all such rays.

Next time

In the next column I'll talk about extending this sim-
ulation to include energy losses and reflection, creating
a smooth image on the screen rather than a cloud of
dots, and making it all work in color. In the meantime,
you might want to read Greenler’s book or do some
experimenting on your own. Most of all, observe the
skies around you a little more closely. Two other great
books on the interplay of light and the atmosphere are
Minnaert’s classic* and the more recent book by Meinel
and Meinel.I find that with increased knowledge comes
increased pleasure in the beauty of our world. [ hope
you find the same. ||
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