drew Glassner’s Notebook

http://www.research.microsoft.com/research/graphics/glassner/

Computer-Generated Solar Halos and Sun Dogs

In the January column, I described Greenler’s tech-
nique for creating dot patterns that approximate solar
phenomena such as sun dogs and solar halos. 1 closed
by promising to extend the simulation to include ener-
gy considerations, smooth images, and color.

Here’s a summary of the basic process for creating the
dot patterns (for details and figures refer to the January
column). We start by imagining a perfectly hexagonal
ice crystal, which may be thin compared with its radius
(in which case we call it a plate) or long and skinny (a
pencil). To create a solar display, we first find an orien-
tation for the crystal. If there’s not much wind, each
crystal will tend to fall with one of its biggest faces par-
allel to the ground. Wind can cause the crystals to tum-
ble as they fall, which we simulate by adding some
amount of random rotation.

Once we have rotated the crystal into the chosen ori-
entation, we send a ray from the infinitely distant sun
toward the crystal. If the ray hits the crystal, we follow
its refractive path through the ice and find its outgoing
direction as it leaves the crystal. To see that light, we
must be looking in its direction back at the crystal, so
we add some light from that direction into our image. 1
simply quantize the direction to the nearest pixel and
color in that pixel. Then we pick a new orientation and
trace a new ray, repeating the process over and over. The
result is a cloud of dots. By following different paths
through the crystals, constraining the possible orienta-
tions, and changing the erystal’s length, we can simu-
late a wide variety of solar phenomena.

Energized by old friends

The first thing we'll do to enhance this model is
include energy effects, which we will handle very casu-
ally. There are lots of places where
the light ray can pick up and lose
energy, but we'll focus just on the
crystal faces. When the ray strikes
the first face, it represents a whole
beam of light. Thus we need to apply
Lambert’s Law, diminishing the
energy by the cosine of the angle the
ray makes with the face normal; this
is our old friend from polygonal
shading. Similarly, we should apply
Fresnel’s Law, which accounts for
the fact that glancing rays are gen-
erally reflected, while rays more per-

pendicular to the face are better able to penetrate the
crystal. Both of these are standard shading models in
computer graphics. Now when we draw a dot in our
image, we can draw it with a color value indicating the
amount of energy it carries.

The pursuit of smooth color

My process of generating smooth color images involved
some trial and error. In a technical paper, people gener-
ally present only the answers that worked and none of
the dead ends. I thought it might be interesting to retrace
the path Itook on my way to creating satisfactory images.

My first extension to the basic algorithm was to
include color. My initial approach was to simply pick a
different wavelength for each ray of light, follow it
through the crystal, and plot it with the right color on
the screen. But after throwing lots of rays, I had a very
speckled image of all different colors, as shown in Figure
1 for the 22-degree halo. Tracing more rays just changed
the speckle pattern, since new rays overwrote the old
ones—the image itself didn’t get any smoother.

Idecided instead to run several different simulations,
each at its own wavelength, and then combine them. 1
used seven wavelengths from 400 to 700 nanometers,
evenly spaced 50 nm apart. The results are shown in
Figure 2 on the next page. Figure 3 shows a close-up
view of just the 400- and 700-nm simulations, where
you can see the inner ring of red generated by the
change in the index of refraction with wavelength.

To compute the index of refraction 1) as a function of
wavelength A, I went to the literature. I found a table for
the index of refraction of ice at three different wave-
lengths for temperatures from 0 to 100 degrees Celsius
in 10-degree increments. A plot of this reference datais

IEEE Computer Graphics and Applications

Andrew
Glassner

Microsoft
Research

1 (a) A dot
pattern gener-
ated using
uniformly
distributed
random wave-
lengths in
asingle
simulation.
(b) Close-up
view,

77

Iwnﬁ:’s Notebook

shown in Figure 4 (left). My favorite formula for approx-
imating n as a function of wavelength A is Sellmeier’s
formula, which in two-term form is (L) = A + B/)*
(you can add more terms for more accuracy, butI found
that the two-term form fit the data with excellent pre-
cision). Since the table gave values at different temper-
atures, | made the coefficients in Sellmeier’s formula
temperature-dependent:

3 Aclose-up of the overlaid upper-
left corner of the 400- and 700-nm
simulations in Figure 2. Note that
the red dots appear inside the blue
ones, and the blue dots
predominate at the outside.

Original data Relative error

2 These seven images are
for simulations at 50-nm

increments from 400 to
700 nm.

Nk T) = A(T) + B(T)/N*

[used a symbolic algebra program to compute A and
B at each of the 11 temperatures, so now had 11 sam-
ples of the functions A(T) and B(T). I found that qua-
dratic polynomials matched both functions very well,
these polynomials are

A(T) = 1.32491 - 0.0000399278 T - 0.00000120678T>
B(T) = 3105.31 + 1.25203T - 0.0353608T*

where T is the temperature in degrees Celsius.

So now to find) at any wavelength and temperature,
[compute A(T) and B(T), and plug that into Sellmeier’s
formula along with the wavelength in nanometers, The
maximum absolute and relative errors in this approxi-
mation are both less than 6 parts in 10,000. The relative
error is shown in Figure 4 (center), and the values gen-
erated by the approximation are plotted in Figure 4
(right). It's winter now in Seattle, so decided to send my
simulations on vacation. All of the figures in this month’s
column were made at a balmy 30 degrees Celsius.

Computed data

706.52° 0

4 Reference data for the index of refraction of ice (left), relative error in the approximation used here (center), and sampling of the

approximation function (right).

78 March 1996

Scanned image, scant results

Ifirst tried to combine the color runs by simply adding
the images together. I hoped that the dense regions on
all plots would sum to white and that smooth regions
would emerge where the different colors faded out.
Unfortunately, the result looked just like Figure 1—
speckles. 1 realized rhat the density plots had to be
smoothed before they could be combined.

My impulse was to abandon the dot patterns and gen-
erate a smooth picture directly by inverting the image-
making process. Rather than orienting the crystal and
then tracing rays, I would scan the screen and find the
probability of a crystal being in the right orientation to
send light through each pixel in the image. This sound-
ed like asimple enough problem: the crystal is rigid, the
geometry of refraction is well known, and everything
should be straightforward. Indeed, itis straightforward
to a point, but things get very messy very fast.

Just setting up the equations is complicated because
of all the trig functions involved. Then I realized that in
fact there was no single solution. Lots of different crys-
tal orientations can send rays back in any given direc-
tion. Just as a quick test I selected one pixel and ran the
simulator. Dozens of different sets of angles sent light
back in almost the same direction, passing through the
same pixel. I decided to stick with the dot patterns and
try to smooth them out.

Blurs and blobs

Looking at the dot pattern of Figure 5a, my first
thought was to blur the density plot. But no value of blur
worked well. The small blur of Figure 5b didn’t get the
dots to join up and form a smooth field, and the large
blur of Figure 5¢ made the whole picture go fuzzy. Next,
Idrew a Gaussian blob over each spot, like the splatting

technique used in volume visualization. I used the dis-
tance from-each ray to its nearest neighbor to determine
the blob’s radius, and scaled the blob’s height by the
amount of energy carried by the ray. The radius was set
so the blob was ar half-height at its nearest neighbor.

Finding the nearest neighbor involved saving all the
raylocations (at subpixel accuracy) and then searching
for neighbors for each ray. To speed the search, I built a
data structure of overlapping rectangles in the image;
then for each ray I searched only the other rays in its rec-
tangle. Because the rectangles overlapped, a ray could
belong to more than one such rectangle; so I avoided
the problem where two nearby rays straddle a bound-
ary between rectangles and don't see each other. When
the image was built up, | normalized the pixel values to
use the whole display range.

Figure 5d shows the result of the blobs. The bright spots
come from places where lots of rays just happened to land
on top of one another (this artifact isn’t visible in Figure
5a because all of these rays land on the same pixel). This
result was disappointing not only because it looked so
bad, but because it required a whole lot of additional com-
putation and storage. I thought maybe if I replaced the
blobs by flat disks it would look a bit better; but as you
can see from Figure Se, this wasn't a success either.

Fuzzy thinking

The bridge to a better answer came from looking at
the blurry picture and the sharp picture together. I
thought thatif 1 could get the blurry picture to show up
where the sharp picture was black, I'd get a smooth field.
So [turned the blurry picture into its own matte and

composited it with the sharp picture. Where the blurry
picture was bright, it dominated the result. As you can
see in Figure 5f, this method smoothed out the inner

IEEE Computer Graphics and Applications

5 First attempts
at smoothing.
(a) Original dot
pattern at 550
nm. (b) Small
blurring of (a)
still looks speck-
led; (c) large
blurring looks
too fuzzy;

(d) using
Gaussian blobs
produces a
splotchy image;
(e) using disks
instead isn’t
much better;
(f) compaositing
(b) with (a),
using the inten-
sity of (b) as a
matte, makes
the inner edge
too blurry and
the outer parts
too speckled.

79

6 (a) Figure 5a
filtered from
400 to 300
pixels on a side,
then filtered
back up to 400.
(b) Figure 6a
filtered down to
200 pixels on a
side, then
filtered back up
to 400.

(c) Figure 6b
filtered down to
100 pixels on a
side, then back
up to 400.

(d) Figure 6¢
filtered down to
50 pixels, then
back up to 400.

7 (a) Equally
weighted
average of
Figure 6b, 6¢,
and 6d.

(b) A better
average using
one part of
Figure 6b,

two parts of 6¢,
and three parts
of 6d.

80

s Notebook

ring, but retained the unwelcome bright dots around
the outside.

While looking at this picture, I realized that I could
probably get what I wanted by combining several images,
each blurred by different amounts. So I created the
images shown in Figure 6. To get the blur, I scaled the
original image down by increasing amounts, then blew
the results back up. My original dot pattern was 400 pix-
els on a side. [applied a Gaussian filter kernel with a
radius of about 1.3 pixels to make a 300-pixel image, then
enlarged it back to 400. Then I applied a filter of radius
1.5 to that to make a 200-pixel image, which I filtered
back up to 400. I filtered that image down to 100 pixels,
and filtered it back up to 400 pixels. Finally, I took that
result, reduced it to 50 pixels on a side, and brought it
| back up to 400. Note that the blurriest image in Figure 6d
is the result of eight filters applied in sequence (four
reducing and four enlarging), not just a single blur to the
original. When all the images were back up to 400 pixels
on a side, I renormalized them to use the full range of
image intensities.

March 1996

At first [simply added the three
blurriest pictures together equally,
as in Figure 7a. That still showed a
little too much of the speckling for
my taste. So I tried again, this time
changing the recipe to use three
parts of the 50-pixel image, two
parts of the 100-pixel image, and
one part of the 200-pixel image.
Figure 7b shows the result. The
inner edge is still relatively sharp,
and the outer edges fade out nicely.

Nothing new under
the sun

As soon as [made these images,
recognized this process as multires-
olution compositing, which is a stan-
dard technique in image processing
and computer graphics production.
1 wished I had thought of it before
trying all the other approaches, but
1did enjoy playing around with this
problem looking for a good answer.
This approach also has a big effi-
ciency advantage over the Gaussian
blob-type solutions, because it's sim-
ple image processing and doesn’t
require lots of additional data struc-
tures and processing. Just draw the
dot pictures, blur them out, and add
them up.

Iapplied the multiresolution blur
and compositing to each of the dot
patterns in Figure 2, and generated
the composite 22-degree halo
shown in Figure 8a. It's a pretty good
match to the photographs shown in
last month’s column. Figure 8b
shows a close-up of the inner edge;
it has a satisfyingly red tint. I ran
through the same process for sun dogs, as shown in
Figure 8c. Note that the sun dogs aren’t just slices of the
halo; their color fringes have a subtly different shape.
The upper and lower tangent arcs for a sun elevation of
30 degrees are shown in Figure 8d.

The movie

I made a movie of the upper and lower tangent arcs
for the rising sun from 0 to 90 degrees. You can find iton
my Web page at http://www.research.microsoft.com/
research/graphics/glassner/ or on the CG&A Web page
athttp://www.computer.org/. 1 will also maintain a list-
ing of notes and errata for these columns on those pages.

There's a lot more going on up in the sky than ['ve
talked about in these two columns. [hope to return to
the topic again sometime. One thing we haven't ad-
dressed is what happens to light that reflects off the crys-
tals, rather than passing through them. These reflections
give rise to a phenomenon called sun pillars. I encour-
age you to write a little simulation program and inves-
tigate them yourself, u

Further reading

The basic technique for creating the dot patterns in this pair of columns was
developed by Robert Greenler and his colleagues and is described in his book,
Rainbows, Halos, and Glories (Cambridge University Press, 1980).

If you want to learn more about the colors in the skies, you can look at Minnaert’s
classic book, Light and Color in the Outdoors (Springer-Verlag, 1937, revised in 1985).
A more recent volume with lots of good information is Sunsets, Twilights, and Evening
Skies by Aden and Marjorie Meinel (Cambridge University Press, 1983).

My data for the index of refraction of ice came from the CRC Handbook of Chemistry
and Physics (CRC Press, New York, 1996). You can read up on the index of refraction
and different formulas for computing it in my book, Principles of Digital Image
Synthesis (Morgan-Kaufmann, San Francisco, 1995); | also talk about Lambert’s and
Fresnel’s Laws in there,

You can learn more about multiresolution compositing in a graphics setting from
the famous “apples and oranges” paper by Peter]. Burt and Edward H. Adelson,

“A Multiresolution Spline With Application to Image Mosaics” (ACM Transactions on
Graphics, Vol. 2, No. 4, Oct. 1983, pp. 217-236).

IEEE Computer Graphics and Applications

8 (a) Multi-
resolution
reconstruction
of the 22-
degree halo.
(b) A close-up
of (a), showing
the red inner
and blue outer
bands. (c) Multi-
resolution
reconstruction
of sun dogs.
(d) Multi-
resolution
reconstruction
of the upper
and lower
tangent arcs for
a sun elevation
of 30 degrees.

81

