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man goes into a bar and starts drinking hard. The

night barman leans over to him and says, “You look
sad. ... Ican see you're alone.” The man shakes his head
and sips at his beer, saying, “It’s those darn nuclear
freeze groups.”

Oh, wait, I got that wrong. T'll start again.

A man gets into his car and starts thinking hard. His
wife Carmen leans over to him and says, “You look sad.
... Did you lose the cellular phone?” The man shakes
his head and shifts into gear, saying, “It’s those darn
unclear frieze groups.”

There’s no reason to get harried over frieze groups.
They're only seven in number, not too hard to under-
stand, and pretty useful. The idea is inspired by friezes—
decorative horizontal bands often used in architecture.
Figure 1 shows a piece of a story-telling frieze from
ancient Egypt. This example shows written language
and people at work, but often friezes are simply abstract
designs used purely for decoration. Ornamental bands
also show up in such diverse crafts as pottery, embroi-
dery, and furniture. When these bands are created by
some repeating pattern or motif, and particularly if that
pattern has some internal symmetry, then there’s a good
chance the structure of the design can be represented
mathematically as a frieze group.

The value of such a description in graphics is twofold.
First, you can generate lots of texture by stamping out
little textured polygons in the right positions and ori-
entations. Second, you can go the other way and, given
a point on a polygon, find out what the texture value
ought to be. In other words, because the pattern is algo-
rithmic, we can synthesize it and generate texture (such
as when scan converting) or analyze it to find the tex-
ture coordinates we need (such as when ray tracing).

First, imagine the components

The basic idea behind frieze groups isto imagine that
you have a design that's printed on a rectangular glass
tile. The tile attaches to a metal rod through a fixture at
its base, and you want to place copies of the tile along
the rod to make a long flat strip. You can't cut or bend
the glass, but you can rotate it around the rod, flip it over
left-to-right, and move it horizontally along the bar, as
shown in Figure 2.

We will restrict our attention to flat bands. In this con-
text, you can rotate the tiles to change their position and
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orientation, but they must end up in the plane of the
page. If you ask yourself how many different kinds of
periodic patterns you can generate from these four tiles,
you're thinking about frieze groups. You may be sur-
prised that there are only seven fundamentally differ-
ent patterns.

If you remove the rod and generalize the process to
the whole 2D plane, then you're creating wallpaper—
designs that repeat smoothly across the plane. There are
only seventeen ways of doing this. Wallpaper patterns
are very important in computer graphics, because we
often create large textured surfaces by taking a little
piece of texture and repeating it over and over. I'll leave
the more complicated subject of wallpaper patterns for
a future column.

The study of frieze patterns is traditionally associat-
ed with group theory, a branch of abstract mathematics.
In fact, frieze and wallpaper patterns appear almost uni-
versally in books on group theory because they are per-
fect illustrations of those ideas. The group-theory
approach to our subject is deeply satisfying because it is
very elegant and presents a beautiful chain of thinking
that makes the results seem inevitable and certain.

But in this column, I'll take a very informal and visu-
al approach to the subject. I hope you'll believe my argu-
ments, but Tll appeal to your intuition. Intuitive
mathematics is no substitute for rigor—some seeming-
ly reasonable conjectures can be completely wrong.
Developing your intuition, however, is a great way to
approach a subject for the first time, since you can get
the big picture up front and fill in details later if you care
to. If you find the subject intriguing, dip into the books
in the “Further reading” sidebar and investigate the
beautiful theory behind these symmetrical patterns.

The infinite band

Our goal is to categorize repeating patterns that lie
within an infinite 2D band. More precisely, suppose that
you have a pair of infinite parallel lines; the region of
the plane between them is where we will draw our pat-
tern. (I'll talk of the pattern running horizontally, but of
course the strip can be oriented in any direction.) The
centerline of the band is the “rod” upon which we will
hang our tiles.

Because the overall pattern repeats, there must be
some piece of the pattern that we can isolate, and then




use as a rubber stamp. In Figure 3a, Ishow a simple band
pattern and the fundamental cell—that little region that
contains the essence of the figure. If we made a rubber
stamp of the fundamental cell, we could make the pat-
tern just by stamping out images left and right into infin-
ity. The result of translating this entire, infinite band by
the width of one cell would give us a new band that is

indistinguishable from the original.

We say that translation is an isometry of such a band.
An isometry is a transformation that preserves shape
(isos = equal, métron = measure), For convenience, we
will give each isometry its own letter; translation is sim-
ply T (unfortunately, the literature contains conflicting
sets of notations for the isometries and the patterns they

produce; my choice here is motivated by simplicity).

Our goal will first be to find all the possible isometries
that an infinite band might possibly contain, then find all
the unique combinations of those isometries,

Hall of mirrors

All repeating strip patterns have a fundamental cell
that generates the strip by translation. If the entire band
is shifted over in either direction by the width of this cell,
the result is indistinguishable from the original band.

1 A drawing of So translation, T, is an isometry of all infinite, periodic

a piece of a bands. What other isometries might an infinite, period-
4,000-year-old ic band contain?
kiosk of King Suppose we look at the centerline along the band and

Sesoris |. The
coloring is not
historically
motivated.

reflect every point above the line to its mirror position
below, and vice-versa for those points below the line, as
inFigure 3b, and come up with a pattern indistinguish-
able from the original. Because the mirror line runs hor-

1

2 Tiles on a rod.
If the tiles are to
be in the plane
of the page,
and on the rod,
these four
orientations are
the only
possibilities.

[

(a)
3 Bands generated by different

operations; the gray zone is a
fundamental cell. (a) Translation
along the band. (b) Translation and
horizontal reflection; the reflection
axis is shown by a dashed line.

(c) Translation and vertical
reflection; the reflection axis is
shown by a dashed line. (d) Trans-
lation and rotation; the point of
rotation is shown by the solid circle,
and the axis of translation is the
horizontal dashed line.

(d)
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4 Pairs of repeated transforma- i 4
tions. (a) Translation (T) repeated g
twice. (b) Vertical reflection (V)
repeated twice. (c) Horizontal
reflection (H) repeated twice. The
original tile is black, the result of
the first operation is green, and the
second result is magenta.

5 Pairs of
different trans-
formations. The
original tile is
black, the result
of the first
operation is
green, and the
second result is
magenta. A
rotation is
represented by
a circle at the
pivot point, and
a reflection by a
thick line at the
mirror.

(a) TH=G and
HT=G. (b) TV=X
and VT=V,

(c) TR=R and
RT=R. (d) HV=R
and VH=R.

(e) HR=V and
RH=V. (f) VR=H
and RV=H.

in Figure 3c. Since the mirror lines
runs vertically, we say it has vertical
reflection symmetry, which we

describe with the letter V. The place-

ment of the symmetry line can’t be
just anywhere—typically it must be
right on the border of a copy of the
fundamental cell.

Another way to think about these
two reflections is as rotations out of

the plane of the band. H symmetry
spins the band around like a very
N\ wide paddlewheel on an old steam-
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izontally, such a band has horizontal reflection symme-
try, which we denote with the letter H.

Now suppose that we place a reflection line perpen-
dicular to the centerline, in the plane of the band, and
exchange the position of points to the left and right of
that line. Suppose the result is just like the original, as
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| boat. V symmetry spins the band like
a giant propeller, the infinite ends
slicing through space.

Another type of symmetry that
the entire band can share is rota-
tional symmetry within its own
plane. Pick a point on the centerline

of the band and imagine rotating the band around that
point. If the band is going to have a chance of being unaf-
fected by the operation, it had better spin by some mul-
tiple of 180 degrees. A 360-degree rotation brings it
right back to where it started. So the interesting rota-
tion is 180 degrees, as shown in Figure 3d. If the result
of a 180-degree rotation is to leave the band looking the
same as when it started, then we say it has half-turn rota-
tional symmetry, which we denote R.

These four operations—T, H, V, and R—seem like a
pretty complete list. Think about it in terms of fixed
points: those points that don’t move under the isome-
try. For translation, everything moves—there are no
fixed points. For both types of reflection, a single line of
points remains stationary—the points along the line of
reflection. And for rotation, only a single point stays
still—the center of rotation. So our four isometries give
us no fixed points, a line of fixed points (twice), and a
single fixed point. Most of the likely sets of possible fixed
points seem accounted for.

This does seem like a complete list. But even in a casu-
al study, we want to make sure we cover all the bases.
Can there be any other simple isometries of the band
that we haven’t considered? It’s possible that some com-
binations of these four isometries could make a new
isometry that might not be obvious. Let’s try combining
them and see what happens.

The mating game

How many useful ways are there to combine our list
of four isometries? Let's try applying two isometries, one
after the other. We'll read them right to left, like nested
trig operations. So HT means to apply translation, then
horizontal reflection. If the result leaves us where we
started, then it's just as though we had done nothing at
all. We represent this by saying that the combination is
equivalent to the identity isometry, written I, The col-
lection of all isometries that preserve the band is called
the symmetry group of the band; we say that the band
is invariant under these operations.

First we'll try each operation twice, as shown in Figure
4. Applying T two times gives us more translation, so



there’s nothing new there. Applying H twice leaves us
right where we started—there aren’t any new isome-
tries to be found there. Similarly, doubling up Vor R
leaves us where we started, so there’s nothing new hid-
ing in those combinations, either. In our notation, we
can summarize these results as T*=T, and
H*=V?=R2=L

Note that this notation doesn’t capture everything
about these particular isometries. For example, when
we write T*=T, we only mean that the equivalent of two
translations is one translation—we’re not saying how
long each translation is. This is to avoid cluttering every-
thing with additional notation that isn’t really useful.

How about the other combinations? There are six
other pairs, each in two forms, as illustrated in Figure
5. Most of the combinations reduce to one of the sim-
pler isometries. For example, consider HR. First we
rotate the cell, then we flip it over the centerline. The
result is just like applying V directly. There are only two
types of odd ducks in the flock. The first is TV. When we
flip the cell across the vertical line, the direction of trans-
lation flips with it—thus the translation stomps the tile
(in a new orientation) on top of its original image. This
is not a new kind of symmetry!

The other odd combination is H and T. Consider HT.
First we translate the cell, then we reflect it about the
centerline of the band. We get the same result with TH.
This resultisn't like any of the other isometries, and it is
the one isometry we missed in the previous section. This
combined move-and-flip isometry, called glide reflection,
is symbolized by G. Applying G twice means we undo
the flip, so two G's in sequence give just a double-length
translation. G has no fixed points.

If you think about combining G with the other four
isometries, you'll find that nothing new comes of it. One
way to see this is to think about writing G as TH or HT:
Following it with any other isometry X, you can write
X(TH)=(XT)H and then simplify. I that leads to trouble,
use HT instead. [ know this section hasn’t been a proof,
but I hope it's suggestive. You can find solid proofs aplen-
ty in the sources listed in the sidebar.

Leading the band

Now we know about all five isometries. Suppose you
wanted to make a periodic band pattern containing one
or more of these isometries. How many different such
patterns could you make? You might think the number
would be huge, but it boils down to only seven. Let’s see
why.

I'wanted to use infinite bands to illustrate this part of
the article, but then I realized it would require infinite
amounts of trees to print them. So instead, we'll just
focus on alittle piece of the band, and imagine it repeat-
ing infinitely left and right. 1like to use the letter Fin the
cell, because it is easy to recognize in any orientation
and has no symmetries of its own.

Because we're making a periodic pattern, by defini-
tion we know we always need the translation operator
T, even if we have nothing else. In fact, translation alone
creates the first frieze pattern, which we call F1, as
shown in Figure 6a. Now let’s add each of our other
isometries to T.

Remember that what we’re after now is to analyze the
possible symmetries in a band. So we're not applying
isometries to a fundamental cell, but rather analyzing
the whole band to see what isometries it has. We'll write
the symmetry group for the band in square brackets, for
example, [TH], to make it clear that for now the order
doesn’t matter. So F1 is simply [T].

Combining T with each of the other isometries gives
us patterns that support [TH], [TV], [TR], and [TG], as
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6 (a) [T].

(b) [TH].

(c) [TV].

(d, e) Two
bands of the
form [TR]. Note
that in (d) the
center of
rotation is at
the bottom-
right corner of
the original tile,
while for (e} the
center of
rotation is in
the middle of
the right side.
(f, g) Two bands
of the form
[TG].



8 (a) [TRH] and
[TRV]. (b, ©)
Two bands of
the form [TRG].

82

shown in Figure 6. That's patterns F2, F3, F4, and F5.
Note that Figures 6d and 6e are the same pattern, except
thatin the latter figure I moved the center of rotation to
the middle of the right side of the fundamental cell.
Similarly, Figures 6f and 6g are also the same pattern.

The next step is to start combining more than two
isometries. We know we always need translation to
make a repeating pattern. So we only need to look at
combinations of the other four.

7 (a) An even
number of
reflections in
parallel lines is
equivalent to

v ! 1
(a)
translation.
(b) An even
number of
reflections in
lines that all /
meet at one
point is ¥y

equivalent to 4 e
rotation. /

(b)
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These combinations get very simple if you look at
them the right way. The trick is to think about succes-
sive reflections. Consider Figure 7a, which shows two
reflections in parallel lines. The result is just translation,
and this is always true for parallel reflections. Figure 7b
shows successive reflections in two non-parallel lines.
The result is the same as rotation about the point of
intersection—you can prove this is always true. So any
two reflections sort of cancel each other out: They turn
into either translation or rotation, which are handled by
their own isometries. So as we build our combinations
of isometries, we can only use one of H, V, or G, or we
lose them both.

Since we need T, that leaves us with only three ways
to combine three isometries: T and R, plus one of the
reflections. Figure 8a shows [TRH] and [TRV]—these
two symmetry groups describe the same pattern, which
is F6. And [TRG] is pattern F7, shown in two forms in
Figures 8b and 8c.

We've exhausted the possibilities! Adding in any more
isometries will cause them to simply reduce to some-
thing we’ve already covered. Although I certainly
haven't presented anything close to rigorous, L hope the
basic argument seems reasonable to you. Essentially, we
found that an infinite, repeating strip could only have
five possible symmetries. Then we found all the ways to
combine those symmetries, and discovered that there
are only seven different patterns.

Figure 9 offers a set of band patterns, one of each type,
The coloration and surface texture is not part of the sym-
metry pattern; if you want to practice recognizing bands
using these examples, focus your attention on the basic
shapes of the patterns, not the little details.

Interlocking tiles

A common use of 2D wallpaper patterns is to create
interlocking tiles. The humbler, 1D frieze patterns dis-
cussed here can be made to interlock as well. The idea
is to design tiles that will fit together into the given pat-
terns without creating any overlaps or leaving any gaps.

You can design rules for building interlocking tiles for
each of the seven patterns. Basically, you just have to
make sure that the edges that touch will fit together and
that they don't self-intersect. It'’s fun to come up with
the little geometric instructions for making these inter-
locking tiles. If you get stuck, take a look at Doris
Schattschneider’s paper listed in the sidebar—she shows
how to build most of the tiles for interlocking frieze
groups.

Coding it up

Symmetry programs are great fun to write. The result-
ing textures can be used to create wood grain on mold-
ings, borders on furniture, hallway carpets, and so on,
giving the textures a little more pizzazz than just
rubber-stamping the fundamental cell over and over. To
create a frieze group image, just pick one of the seven
patterns, create the fundamental cell, and replicate it as
needed. For interlocking tiles, you can write a program
that lets a designer draw curves freehand somewhere
on the edge of the tile, then automatically generates the
appropriate other curves on other edges.



~ Further reading
Computer graphics people generally have
strong visual skills, so a good way to get into the
math is with a book that has lots of good
pictures. A book that develops group theory
with lots of pictorial illustrations from many
different cultures is Symmetries of Culture by

Dorothy K. Washburn and Donald W. Crowe

- (University of Washington Press, 1988). Another
big book that offers tons of examples of different
symmetry patterns is Handbook of Regular

 Patterns by Peter S. Stevens (MIT Press, 1981). A
-wonderful warehouse of copyright-free
- examples of many types of patterns can be
- found in Decorative Symbols and Motifs for Artists
- and Craftspeople by Flinders Petrie (Dover
Publications, 1986).

- If you want to get into the math, a good visual
 starting place is Groups and Their Graphs by
Israel Grossman and Wilhelm Magnus (Random

‘House, 1964). Another visually oriented book,

- but much heavier on the mathematics, is

Incidence and Symmetry in Design and
- Architecture by Jenny A. Baglivo and Jack E.

Graver (Cambridge University Press, 1983). The

study of isometries and their interactions is
- called transformational geometry; any good
introduction to group theory will give you the
- tools to till this field. A great introductory paper
- on color symmetry for frieze groups is “In Black

and White: How to Create Perfectly Colored

- Symmetric Patterns” by Doris Schattschneider
(Computers & Mathematics with Applications, Vol.
%ZB, Nos. 3 & 4, 1986, pp. 673-695).

Free-running programs can create eye candy of all
sorts, from screen savers to animated backgrounds.
Consider creating a long band that winds back and forth
across the screen, with a changing pattern replicated
across it, and maybe passing through a random series
of band types.

There are some fun programming projects associat-
ed with frieze groups. You can write each of the isome-
tries as a matrix operation, so that any combination of
isometries can be captured by a single composite
matrix. You might try writing out the matrices for each
of the five isometries T, H, V, R, and G. Then write a pro-
gram that takes as input a texture tile and generates
appropriately transformed versions of that tile to make
aband.

Another useful routine takes as input an original tile,
aband type, and a point anywhere on the band; the rou-
tine analyzes the position of the point to rerurn the
appropriate point in the original tile that corresponds
to the selected point. For example, if the original tile
runs from (0,0) in the lower left to (1,1) in the upper
right, the band pattern is [TH], and the input point is
(3.2, 0.6), then the routine would return (0.8, 0.6)—
the location in the original tile that ends up at the input
point after being transformed there.

"N..' ‘ﬂJ ’,,pl

If you want to get into color, see the further reading
sidebar for some useful information on color symmetry,

When you allow repeated reflection lines throughout
the plane (rather than the special horizontal and verti-
cal orientations we used here), you can fill the plane
with images. Similar beautiful patterns can be seen by
looking into a kaleidoscope. The kaleidoscope’s class of
symmetrical designs can be understood from the point
of view of point groups—but that's another column. W
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9 The seven

frieze groups.
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