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In my last column, I talked about the pleasures of hold-
ing a 3D model in your hand. This may have seemed a
bit odd. After all, there weren't any computers involved.
But I believe that the best computer graphics comes
from people who bring a variety of skills to the task.
One of the most important skills for anyone working
with 3D graphics is a strong 3D visual imagination and
3D intuition. So this month 1will continue the topic of
3D models that we can build and hold.

Archimedean solids

In the last issue we built origami models of the five
classical Platonic solids: the tetrahedron, cube, octa-
hedron, dodecahedron, and icosahedron (and, of
course, the recently discovered teapotahedron). The
models were all created simply by folding pieces of
paper, and then putting different pieces together.

Now we’ll take a look at three of the Archimedean
solids. There are more of these, butwe’ll only look at the
ones that are equal mixtures of pairs of Platonic solids.

The cube/octahedron dual

Suppose we take the cube of Figure 1a and mark the
centers of the six faces with dots. Each dot has four other
dots that are closest to it. If we draw a line between every
dot and its nearest neighbors, we get Figure 1b.
Removing the cube, we see in Figure 1c that we’ve cre-
ated an octahedron. Its six vertices correspond exactly
to the six faces of the cube.

Now imagine repeating the process on the octahe-
dron. If you put a dot at the center of each of the eight
triangular octahedron faces, then each dot has three
nearest neighbors. Connecting those dots creates the
outline of a cube: the eight faces of the octahedron cor-
respond exactly to the eight vertices of the cube.

The cube and the octahedron are called dual poly-
hedra, or simply duals.
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We can show this relationship with our origami mod-
els. | was sneaky last time because I showed how to build
a framework cube and a solid octahedron. That was so
that I could make the nested pair shown in Figure 2. You
may have to play a little to get the sizes right, but the
results are worth it. I built both models, then simply
opened up the cube to place the octahedron inside.

We can look at the dual construction in a slightly dif-
ferent way. Suppose we start with the cube of Figure 3a
on the next page and begin slicing off the corners. Figure
3b shows a step along the way: the square faces become
octagons, and each vertex turns into a triangle. As we
deepenourslices, the triangles in the corners grow larg-
er and larger, until they touch, as in Figure 3c. Now the
faces are squares again, but they're rotated 45 degrees
with respect to their previous orientation. If we contin-
ued shaving down the corners, we'd be left with an
octahedron.

The shape in Figure 3c is, in some sense, halfway
between a cube and an octahedron. It’s an Archimedean
solid known as a cuboctahedron. This is a celebrated
shape; Buckminster Fuller had a particular fondness for
this structure, which he called the vector equilibrium,
and believed it was a basic building block of our world.

We can build a cuboctahedron with origami, as shown
in Figure 4 (next page). The basic building block is a ver-
tex unit with four radiating arms; it's a lot like the trian-
gular piece we used last time to build the dodecahedron.
Folding instructions for the square vertex unit are given
in Figure 5. The piece isillustrated in Figure 6a, and you
can see how to put them together in Figure 6b.

1 (a) Cube.

(b) The center
of each face
marked by a dot
connected to its
four nearest
neighbors.

(c) Octahedron.
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5 Folding the
square vertex
unit.

6 (a) Square
vertex unit.

(b) Assembling
two units.
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3 (a) Cube. The corners sliced (b) a quarter of the way
off and (c ) down to where the triangles meet in a
cuboctahedron.

4 An origami
cuboctahedron.
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The tetrahedron/tetrahedron dual

Now that we’ve seen the basic idea behind duals,
think about what the dual of the tetrahedron might be.
You can use the point/face connection approach of
Figure 1 or the shaving-down approach of Figure 3, but
you'll reach the same answer either way: the dual of the
tetrahedron is another tetrahedron! We say that the
tetrahedron is self-dual.

Figure 7 shows a pair of tetrahedrons, nested inside
one another. Notice that just like the other dual pairs, if
you file down the corners of the larger, framework tetra-
hedron, you'll get the one inside. The framework tetra-
hedron was made with a slightly altered version of the
little turtle unit, described later under “The dodecahe-
dron/icosahedron dual.”

7 A pair of
nested
tetrahedra.
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If you use the corner-shaving
process and stop halfway, you'll
reach another Archimedean solid
known as the truncated tetrahedron,
shown in Figure 8.

You can build this model from six
hexagonal pieces of paper; three
will end up forming the big hexag-
onal faces, and three will form the
triangles. To get a hexagonal piece
of paper from a square, look at
Figure 9a. The basicidea is to fold a
30-60-90 triangle at each corner,
and then getrid of the triangles and
the flaps on the sides. The geome-
try behind this is shown at the far
right in Figure 9b. Basically you're
making sure that each side of the
hexagon has unit length and meets
the other sides at a 60-degree angle.
The two pieces involved are shown
in Figure 10.

Figure 11 shows how to build the hexagonal piece.
Expect to practice on it for a bit. Folding over those flaps
while getting the inside part to fold under is a snap once
you see what to do, but it might take some time to get
the hang of it. The step in parentheses is meant to show
that you have six flaps going around at that step—you
don’t need to actually open up the flower. The last few
steps involve tucking in three of the flaps. The result is
a hexagon with pockets on three sides.

Figure 12 shows how to build the triangular piece.
This is a little triangle with three flaps that go into the
pockets of the hexagons. The model will hold together
this way, but loosely. You might want to reinforce it with
some glue or tape hidden inside.
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8 An origami
truncated
tetrahedron,
half way from
one tetra-
hedron to
another.,
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The dodecahedron/icosahedron dual

The remaining two Platonic solids are the dodeca-
hedron and icosahedron, and as you probably expect
by now, they are also duals of each other. Figure 13
shows the dodecahedron and icosahedron from last
issue’s column together. As with the other duals, you
can see the points of the icosahedron poking out of the
center of the faces of the dodecahedron.

If you whittle down the points of one of these solids,
stopping when they start to touch, you reach the
Archimedean solid called the icosadodecahedron. This is
abig object. It combines the 12 pentagons of the dodec-
ahedron and the 20 triangles of the icosahedron, for a
total of 32 faces in all. It has 30 vertices and 60 edges.

Itried a lot of approaches to building this model, but
it’s tricky to get something this complex to stay togeth-
er; almost everything was too flimsy. The problem is that
any two faces that touch are almost coplanar. If a flap
sticks into a pocket, there’s nothing to keep it from just
slipping out again.
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Finally I modified an edge-based
unit called the little turtle, and the

model hung together, more or less.
Figure 14 (next page) shows my
icosadodecahedron based on the
modified little turtle unit. The morn-
ing I took this 12-inch diameter
model to the photographer’s studio,
I accidentally dropped it from the
incredible height of about 4 inches.
One whole side of the model dented

inwards, and asI tried to tease it back % C& % % % @
into a spherical shape the whole

thing started to unravel. Stable, yes,

but don'’t sneeze near it.
The folding diagram for the little %’ % @ @ @ % @

turtle is given in Figure 15 (next
page). For the variant that I used

here, Iopened up the triangle at the @ @ @ @ @
top and bottom of the unit, as shown

in parentheses at the very end.
Figure 16a shows the opened-up
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12 Folding the
triangular face
of the truncated

tetrahedron.
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9 (a) Creating
a hexagonal
from a square.,
(b) Geometry of
part (a).

10 The pieces
that make the
truncated
tetrahedron:
(a) from the top
and (b) from
the bottom.

11 Folding the
hexagonal face
of the truncated
tetrahedron.

13 Nested
dodecahedron
(the outer shell)
and
icosahedron
(the inner
solid).
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15 Folding the
little turtle. The
final figure in
parentheses is
the opened-up
version for the
icosadodeca-
hedron.

16 (a) The
little turtle. (b)
Assembling
turtles.

14 An origami
icosadodeca-
hedron, halfway
between a
dodecahedron
and an
icosahedron.
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17 Another
origami
cuboctahedron.

little turtle; Figure 16b shows how to put them together.

Be patient as you assemble this model. It's delicate.
1t’s also big—once you've folded the necessary 60 pieces,
you'll be able to do more in your sleep.
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Variations on a theme

There are many directions to generalize the tech-
niques we've seen in these two columns. We can move
on to entirely new models and classes of models or cre-
ate some variations on the ones we've already built. 'm
going to take the latter approach here, because most of
my own understanding of how unit origami works came
from playing with variations such as these.

First, Figure 17 shows an opened-up version of the
cuboctahedron. It takes a little more folding, but I like
those windows that show through. Figure 18 shows you
how to fold the piece; it looks a lot like the square ver-
tex unit when you're done, except that the pockets don’t
reach all the way to the center.
Figure 19a shows the pieces from
above and below, and Figure 19b
shows how to assemble them.

You can also play around with the
folding pattern. The limitations of
space here limit the variations I can
show. To see more of what I've come
up with, visit my Web site at hetp://
www.microsoft.com/research/
graphics/glassner/. Try cooking up
your own variations on these
themes; you'll find that after a while
you can begin to imagine what the
results will look like even as you
dream up new ways of folding the

paper.

Coding it up

There are a bunch of interesting
programming projects hiding with-
in the subject of origami, and unit
origami in particular, Certainly one
of the most straightforward is to
write a program that will read some
form of origami notation and create
a 3D geometry file of the result,
which you can then render. Or you
can use the same information to cre-
ate folding diagrams. These are both
very hard problems if you go into
them deeply. The folding problem requires keeping
track of the thickness of the paper at each fold and how
it slides around (for example, if you have two layers of
paper involved in a fold, the outermost layer requires
more paper than the inner layer). The diagramming
problem is pretty tricky, because getting the right point
of view and picking the right steps to illustrate it are very
personal choices.

I made the diagrams in these two columns by hand
with a computer-aided drafting program. With my
trusty calculator, I computed all the angles and lengths
to make sure that everything lined up just where it ought
to. I got very good at remembering the values for V3 and
1/43, as well as a few other key ratios. After I finished
these diagrams, I learned about Maarten van Gelder's
program Oridraw, which reads a text file with folding
instructions and produces PostScript output. I haven't
tried the program, but it's freely available from
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18 Folding the
variant for

http://www.rug.nl/rugcis/re/ftp/origami/programs/
oridraw/.menu.html if you want to give it a whirl. A
whole bunch of other origami-related programs can be
found there as well.

Moving on

Unit origami is only a few years old, and it’s growing
quickly. I encourage you to build some of the models in
this column and cook up some variations of your own,
using decorated paper or mixing modules up. I used a
variation on the tetrahedral units to notify friends the
last time I moved. They received three colored squares
with writing and a page of folding instructions to create
the 3D moving card in Figure 20.

Happy folding! |

Acknowledgments

The units in this column were originally presented in
the books by Fusé, and Gurkewitz and Arnstein. Thanks
o Alvy Ray Smith for encouragement in pursuing origa-
mi polyhedra, Jim Blinn for locating a cool book on the
subject, and Bobby Bodenheimer for finding a copy of
Lang’s CalTech article on origami.

- Figure 17.

19 (a) The variant square vertex
unit. (b) Assembling two units.

20 Amoving
card built from
unit origami.

- Further reading

The basics of unit origami were first put forth in Unit Origami by

Fusé (Japan Pubs). 3-D Geometric Origami by Rona Gurkewitz and

- Bennett Arnstein (Dover) is a little light on discussion but presents a
‘wide selection of units. For more traditional origami, | recommend

~ The Complete Book of Origami by Lang (Dover Pubs). For more fun

with paper, look at Paper Dinosaurs by David Hawcock (Sterling
Publishing) and Paper Capers by Jack Botermans (Henry Holt).
Two of Robert Lang's technical articles on origami are particularly
interesting. “Mathematical Algorithms for Origami Design”
appeared in Symmetry: Culture and Science, Vol. 5, No. 2, 1994, pp.

- 115-152. “Origami: Complexity Increasing” appeared in the
- CalTech quarterly magazine Engineering & Science, Vol. LII, No. 2,

Winter 1989, pp. 16-23.
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