Andrew
Glassner

Microsoft
Corporation

78

.research.microsoft.com/research/graphics/glassner/

Going the Distance

uick, what’s the fastest way to get from one point
Qto another?

A straight line, right?

Well, it depends on what you mean by “straight.”

One of the fun aspects of non-Euclidean geometries is
discovering how familiar shapes change under new
rules. The new rules mean we have to think about dis-
tances differently than in the world Euclid described.
For example, suppose you want to travel from Paris to
New York. In practical terms, you can’t take the straight-
line path—that choice would require you to drill a tun-
nel through the Earth. Instead, you might take a boat or
a plane, both of which travel in curved paths over the
Earth’s surface. Compared to the tunnel, the plane takes
alonger path and you'll need more fuel, but at least your
wings won't get ripped off.

In this month’s column, we'll take a look at a couple
of simple 2D geometries that obey different distance
rules than those that Euclid described.

The Euclidean world

We'll start with the familiar world of 2D Euclidean
geometry. The distance d: between two points A and B
is given by the familiar formula

I'_ S e s B
dg(A,B)= (A, - By ¥+ (A, - B,)
Let’s put this formula into action. Suppose we have a
circle of radius r, centered at point M. Points on the cir-

cle are those where the value of the function C are 0:

C(P,M,r)=dg(P,M)* - r*

1 (a) A height-field plot of the
circle function, centered at (0.1,
0.2) with radius 0.5. (b) Heights are
mapped to shades of gray. The
yellow curve is that set of points
with the value 0.0.

AR
R
A AN A
RS

R
e

(@)

January-February 1997

Figure 1 shows a region of the plane with this func-
tion plotted. In all of the figures in this column, the val-
ues in the plotted domain are scaled to place black at
the minimum value and white at the maximum. The yel-
low curve indicates where the function has a value of 0.
Of course, it’s a circle.

More interesting than the circle is the blob. There are
lots of blob functions; I like the one developed by Wyvill,
McPheeters, and Wyvill. It's a circularly symmetric shape
parameterized by the distance r from the center and the
size R of the blob. The blob equation B is given by

_a(22-a(17- 4a))

1 if 0sa<1
9
B(A,B,R) =
0 otherwise
where
2
dg(A,B)
o= =
R

This is plotted in Figure 2.

Figure 3 shows three blobs in the plane. Where blobs
overlap, their values are simply summed up. The yellow
line here indicates the curve where the value is 0.5.

Another interesting function of distance demands
your attention following your recent wedding (con-
gratulations!). The question is where to live so that you

(b)

0272-1716/97/310.00 @ 1997 IEEE

(@)

s
e
ST

A

(O]

and your spouse travel the same distance to your respec-
tive workplaces. If your job is at point A, and your spouse
works at point B, then your house at P can be anyplace
where d(P, A) = ds(P, B). If we plot

H(P, A, B) = di(P,A) - ds(P, B)

then we’re once again looking for points P where the
value of H is zero, shown in Figure 4 by the yellow line.

Our three formulas each depend on d; to give us the
distance between two points. Thanks, Euclid,

Taxicab geometry

You can’t get there from here.

Well, you can, but you have to take a cab.

Suppose that you live in a city laid out on a grid, like
midtown Manhattan. For simplicity, we'll assume it's a
perfect square grid. If you want to take a cab from point

2 (a) The blob function

B(r, 0.5). (b) A 3D plot of B(r, 0.5)
using the Euclidean distance metric
dr to find the value r between a
point on the plane and the blob’s
center at the origin.

N LETETIS
N
T LN 1 1 N

.:."jflll?é“\ N ;?;»’,‘F'lf%\‘\‘\\?fg@r 3 (a) Three blob functions.
:e;{(l"'..“\ﬂ',“""' .”“\\\\‘{'* The centers are at (0.5, 0.2),
] N OSEHHRNGR) ;
i "Q§~\s#ll',. NS (-0.3,-0.3), and (0.4, 0.1), with
'l",,',.....‘é"#.’,’,’.'..’..‘.‘“ radii 0.7, 0.6, and 0.3 respectively.
,:'."’t. LS ..‘éb’:.'.'l. LA N (b) The grayscale version of the

pest: t‘.".q’ "%‘M three blobs. The yellow line is an

-, AT AT IS >
S ~ isocontour at a height of 0.5.
25

(b)

4 (a) The equal-distance function.
One workplace is at (0.6, 0.2) and
the other at (0.3, -0.4). (b) The
grayscale version. The yellow line is
the set of points equally distant
from the two workplaces.

(b)

g 5 Two points A and B, and a taxi-
cab’s route between them. The taxi
needs to cover a distance of seven

A blocks, though the Euclidean dis-
tance is only five.

Ato point B, how far do you have to travel?

Figure 5 shows the situation. A little thought reveals
that the taxicab distance d-(4, B) is given by

dr(A, B) = |Ac~Bi| + |A,-B,|

Simply put, you need to go horizontally and then ver-

IEEE Computer Graphics and Applications 79

—
Andrew Glassner's Notebook

6 The three
test functions
using the taxi-
cab metric:
(a) the circle,
(b) the three
blobs , and

(c) the two-
workplace
distance.

8 The three
test functions
using the modi-
fied polar met-
ric dp.

80

7 A polar grid
for measuring
distances at the
North Pole.

tically. Strictly speaking, this is the shortest taxicab dis-
tance. As anyone visiting an unfamiliar city knows, a cab
can take a very circuitous path from one place to anoth-
er, and you can pay for many more miles than were actu-
ally required. But conceptually, the distance d- is all you
need to cover.

Let’s revisit our three functions from the previous sec-
tion, using dr rather than d. Figure 6 shows the same
functions with this new measure. The circle has become
adiamond, as in Figure 6a. This makes sense if you think
about it in terms of the form of dr. Suppose we are sitting
on a point Pwhere d+(P, C, r) = 0, and the center of the
“circle” is to our northwest; that is, C. < P,and P, < C,.
Then as we move left, we have to move an equal amount
down to keep the function at 0. This equal trade-off
keeps us moving in a straight line, Similarly, we’d expect
the blob function to also turn into diamonds, and Figure
6b shows that they do.

Figure 6c is a little more interesting. Some of the
points equidistant from the two workplaces still lie along
a line between the two, but then the line turns vertical.
As we move along those vertical segments, we move the
same taxicab distance from both workplaces.

Polar bear geometry

Last night I shot a polar bear in my pajamas. How a
bear got into my pajamas, I'll never know (thanks,
Groucho). These guys live up north, where instead of a
square grid we can plot the landscape in a latitude-lon-
gitude format, as in Figure 7.

Up here at the North Pole, there are lots of ways to
compute distance. Commonly, we first convert a point P
from Cartesian (x, y) format to polar (r, &) format, rep-
resenting the radius from the pole and angle made with
respect to a particular line. This rectangular-to-polar
conversion is simply

| 2 2
A=A, +A,

A, =tan(A, /A,)

You can prove to yourself that using these values you
can compute a distance dy that is the same as d;:

2z 2
dy(A,B)=A, +B, —2A_B, cos(A,—B,)

That’s nice, but because dy = dg, if we plot our three
functions again they’ll look just as the same for the
Euclidean measure.

So let’s cook up something that's a little different, but
still interesting. Just like the taxicab distance, we can
simply add up the difference in the radii and the dif-
ference in the angles. To make the images look inter-
esting with the same equations that we used above, I
arbitrarily decided to scale the angle measure down by
dividing by 2 . One trick with the angles is that we want
the difference between 5 degrees and 355 degrees to

January-February 1997

be 10 degrees, not 350. The cosine operator did that for
us in the definition of dy; we can do that procedurally
for our polar-bear distance dp:

Min(’A,, - B,,I, 27r7|A9 - Be|]
2r

dp(4,B)=[A, - B |+

This is how far you'd have to travel under a spoke-and-
ring type of monorail system. Figure 8 shows our three
functions under the polar-bear measure of distance.

Other metrics

[t’s easy to change the definition of the distance func-
tion to try out other metrics. Here are a few fun metrics
thatIcooked up. The first one involved mapping the hor-
izontal interval (-1, 1) to the interval (0, 2x) and then
taking the sine of that value. The metricis the arclength
of the fragment of sine curve between the X components
of the two points, scaled by their vertical distance. In

symbols, using s(f, x0, x1) to represent the arc length of
function fbetween arguments x0 and x1, the arc length
metricd, is

dalf, A, B) = 5(f, A, B)) |A,—By|
Our three functions plotted with this metric using

f(x) = sin(x) are shown in Figure 9.

¥

The star metric ds has a gort of pol
[A, -B,

r-jsh fegl:
ds(A,B) = dg(A,B) cos| 27 tan™ 7"]

The results are shown in Figure 10. Finally, the ring met-
ric dx takes the Euclidean distance and maps it into the
sine curve:

da(A, B) = sin(2n de(A, B))

The ring-metric images appear in Figure 11.

IEEE Computer Graphics and Applications

9 The three
test functions
using the arc-
length metric ds
with the sine
function.

10 The three
test functions
using the star
metric ds.

11 The three
test functions
using the ring
metric dg.

Andrew Glassner's Notebook

12 (@) The
“coarse resam-
pling grid for
the circle func-
tion measured
with the Euclid-
ean metric. Red
circles are posi-
tive values and
green are nega-
tive. (b) Lines
join resampling
points of differ-
ent sign, and
the small circle
indicates the
starting point
for the curve
along that line.
(c) The grid,
starting lines,
and the fol-
lowed curve,

Plotting implicit functions

I created the yellow curves in this column using a pro-
gram that plots contours of implicit functions. Basically,
you give the program a functionf(x, ¥) and alevel valuea,
and it finds that set of points (or locus) where f(x,) = a.

Plenty of commercial programs out there will do this
job for you, but not everybody has one. [didn't when I
felt like playing around with these curves. Happily, it's
both easy and fun to make your own. In this section I'll
give you the general approach that I followed, which
does the job pretty well. It only took me a couple of hours
to write the first version in Basic; it took about the same
amount of time to write a much spiffier second version
in C (the one I used for all the figures in this column).

I found it useful to have four runtime controls: the
size of the graph (all of the plots in this article are 400
by 400 points), the choice of the function to plot (for
example, circle or blobs), the choice of metric (like
Euclidean or Polar-Bear), and the threshold a (usually
0). Four other values, described below, control the algo-
rithm'’s accuracy.

First, draw the grayscale picture, To do this, [evalu-
ated all the points in the image and kept a record of the
minimum and maximum values of the function. Then
I evaluated all the points again, this time scaling them
to the range O to 1, which I mapped into grayscale val-
ues 0 to 255. If you have lots of memory and a slow
processor, you could save the points in an array and
then scale them in place instead of recomputing them
all. I just drew the scaled points into the screen and for-
got about them.

T use a very simple strategy to draw the level curve. 1
begin by searching the function to find points on the
curve. Ilook around each point and follow the curve as
far as [can in both directions. Then I search for another
point. This way if there are several disconnected curves
or segments, I can pick up each one in turn, at the risk
of going over some of them more than once.

The first step in finding a curve to follow is to find a
point on the curve. If we’re plotting a function
z = flx, ¥), then we're looking for points P where
f(P) = 0. 1f we find two nearby points A and B such that
f(A) < 0and f(B) > 0, then we can search the line AB
for points where the function goes through zero. I find
these points by scanning a coarse grid on the domain.
The density of this grid needs to match the high-fre-
quency content of the function being plotted; smooth
functions can be sampled loosely, while wiggly ones

January-February 1997

needed a denser mesh. In this article, I sampled Figures
1, 3,4, and 6 with a mesh 10 samples on aside; the other
figures used a 30-by-30 grid. Figure 12a shows the
coarse grid.

Next, I use this grid to search for points with differ-
ent signs. For each point on the grid (with the exception
of the top row and rightmost column) I compare the sign
of the point with the sign of the point to its right and the
one above. If the signs are the same, I move on. If they
differ, I find a point on the curve between them, follow
it, and draw the curve, then return to test the next pair
of points.

Figure 12b shows the grid marked with lines that join
points of different sign.

I trap the curve with binary subdivision, recursively
halving the input interval to always contain a point P
where f(P) = 0. The recursion stops when the interval
is too short or the midpoint is nearly zero. [use a min-
imum length of 1/kS, where S is the largest side of the
display grid (in these pictures, S = 400), and a toler-
ance € (so 1 stop when |f(P)| < €). For plenty of func-
tions you can fly by the seat of your pants, setting these
around k = 4 ande = 1 x 10, and all is well. You can
be less conservative and draw your pictures quicker if
you know something about the function being plotted.
Most of the functions in these figures are pretty smooth,
and these values worked fine. These two values k and
£ are the first two of four numbers that control the algo-
rithm's precision.

Returning to the job of drawing the curve, the bina-
ry searcher returns a starting point S on or near the
curve. Hey, one point! Now, if we only had a second
point, we could draw a line (Euclid really did have this
all figured out).

I assume that if we stand on the point § and look
around, we would see two branches of the curve leaving
the point, in opposite directions. Of course, they could
turn around really fast, but when we face one branch,
the other is at our back. This assumption can fail—for
example, if S is a cusp. I'll get back to this later. But usu-
ally it is true. To keep the bookkeeping simple, I handle
the two branches independently.

To find a branch, I search a circle around S, looking
for points on the curve, This circle is specified by the
other two numbers that set the accuracy of the algo-
rithm: the radius r of the circle and the number of sam-
ples n taken around it. The radius of the circle controls
the length of the little line segments that make up the

curve. Adding more steps around the circle lets us fol-
low wigglier curves.

So I sample the function at n points on the circle and
look for adjacent points of different sign. Figure 13
shows a curve passing through S. The two-branch
assumption above says that we'll find two pairs of adja-
cent points with different signs. Each of these pairs sur-
rounds a point on one of the branches.

I take the two pairs in turn, following (and drawing)
the curve passing through one and then repeating the
process for the other. If the curve is a circle (as in Figure
1), I'll end up following the curve twice, once clockwise
and once counterclockwise. It wastes some time, but
there’s no other harm done.

Given a point S and one pair of points on the circle, I
again hand the pair of points to the binary subdivision
routine. It gives me back a new point P on the line
between the points and on the curve. That's the second
point! | immediately draw the segment SP with a thick
yellow line.

Now it’s time to follow the curve. I can repeat exact-
ly the same circle-searching procedure around the point
P, finding two pairs of points that contain the curve. One
of those pairs contains the branch we just came in on,
where the other pair holds the new branch. We can try
to determine either the old branch or the new one. We
can find the old branch by finding the one that contains
S; then the other branch is the new one. That works fine,
but we can make the algorithm a bit more robust with-
out any more cost by doing this a bit differently.

Suppose that the curve crosses over itself at P, like at
the middle of a figure eight. Then four branches will
come out of P. If we find the one containing S, we still
don’t know which of the remaining three to take. But
suppose we use the pair furthest from §. Then we’ll
always head out in the direction opposite the way we
entered, and as long as the two intersecting lines aren’t
nearly parallel, we’ll follow each one just fine. So to find
anew point, 1 search around P for pairs that contain the
curve, then pick the pair farthest from S. To test for a
pair’s distance from S, I find the distance from S to the
pair’s midpoint. To determine this distance I use the con-
ventional Euclidean metric, though I don't bother with
the square root. (This is a standard trick, which works
because I am only looking for the biggest distance—the
square-root function doesn’t change that.)

Soldraw another thick yellow line from P to the new
point. The new point becomes P, the old point becomes
S, and I repeat the procedure, pushing forward one cir-
cle-radius at a time. When I'm done following the first
branch, I follow the other branch, then return to the
coarse grid to find another starting point.

Four criteria determine when I'm done following a
branch. First, if the branch goes off-screen, 1 stop, fig-
uring that even if the curve comes back on-screen, I'll
catch that new piece from another starting point.
Second, if the branch closes itself, I stop. To determine
that, I save the very first point S. As I follow the curve, 1
check the distance of each new point against this origi-
nal point. If I get within a pixel, I join the gap and stop
following the curve. This test only cuts in after I've
already drawn 10 segments, so I don’t accidentally stop

as soon as I've started. Third, I have an arbitrary upper
limit on the number of steps I take on a branch; I used
5,000 for this column. This guarantees the program
doesn’t get stuck in an infinite loop. This could arise, for
example, between two narrow cusps—the tracker could
just Ping-Pong between them forever unless otherwise
stopped. Finally, I stop if for any reason [can't find a new
point to move to.

That's it! It’s a bit wasteful (since most branches are
drawn a few times), but it’s robust enough for playing
around with the sorts of functions in this column. This
simple algorithm also runs pretty quickly—all the
grayscale figures were created by my first-version pro-
gram in interpreted Basic in less than 15 seconds each
on a Pentium 90-MHz machine. The compiled C code
ran much faster.

Not exactly bulletproof

This algorithm is hardly bulletproof. [mentioned ear-
lier that cusps could be a problem. In fact, any tight U-
turn poses a problem for this algorithm, whether it's
pointed or just a sharp turn. Suppose that we're at a
point P on (or near) a cusp. As we search the circle
around P, we find that there aren’t any pairs of points
with differing sign. Figure 14 shows the problem.

In my implementation, this caused the program to
stop because of criterion 4 from above—there simply
wasn't anywhere to go. You can actually handle this
problem with another subdivision step. Find the pair of

IEEE Computer Graphics and Applications

13 Pushing
forward. The
previous point
is marked §; the
current point is
P. Two pairs of
points on the
circle around P
trap the curve,
giving two
points on the
curve, We
would choose
the one on the
right, since it’s
farthest from §.

14 Acuspat P
results in both
arcs leaving the
circle through
the same pair of
points.

83

find an elementary introduction to
in Taxicab Geometry by Eugene F.
Publications, 1986). If you're
 functions to play with, a
l d i

Wyvill,

Visual Computer,

 Introduction by E.
ringer-Verlag, 1990),
Map” by G. Cottafava
.12, No. 7, 1969).
‘problems of the coarse
terval analysis, as -
s for Computer
‘Computer Graphics
, No. 2, July 1992).

points that includes § and subdivide that interval. You'll
need to follow all the branches of the tree, but sooner
or later you should find a point that has a different sign

January-February 1997

from the others, and this will give you a pair of intervals.
Pick the one that doesn’t contain S, and that will con-
tain the new branch.

Lots of other improvements could make this a more
general algorithm. One of the pleasures of hacking up
your own routine is that you can design it to work per-
fectly well for your particular needs, but making that
specialized tool more general, more efficient, and so on
is also fun. A few starting places for making this pro-
gram better follow.

First, the coarse sampling grid can miss small fea-
tures. This is a standard sampling problem, but because
you draw the grayscale version first, you can use infor-
mation from that to help guide a smarter search strate-
gy. Second, big flat basins are something of a problem;
if a whole big region has the value 0, the tracking rou-
tine can wander around erratically. Third, you could run
some numerical analysis routines on the function being
plotted to gather initial estimates and values for the four
accuracy controls described above.

Different measures of distance can lead toward all
kinds of non-Euclidean geometries. I find the connec-
tion between the math of the space and the aesthetics
of the imagery captivating. Playing around with differ-
ent metrics and functionsis a lot of fun, and after a while
1find my intuition gets pretty good at predicting what's
going to happen. Try it for yourself and see. | |

