Andrew Glassner’'s Notebook

http://www.research.microsoft.com/research/graphics/glassner

Situation Normal

In the pantheon of science, having your name attached
to something is a pretty high honor. Graphics isn’t ter-
ribly big on this practice of eponymy—most of our
techniques bear descriptive names, such as z-buffering,
ray tracing, and the RGB color space. But there are
exceptions. Two of the most famous graphics tech-
niques, derived from shading algorithms by Henri
Gouraud and Bui-Tuong Phong, have been implement-
ed in hardware and software worldwide.

Both methods use various hacks to smooth out the
shading of a polygonal surface. So rather than looking
like an assembly of flat slabs, a smooth-shaded model
seems, well, smoother. The sharp creases between poly-
gons are gone, replaced by a continuous change in tone
or color.

But if the original polygons aren’t being rendered
directly, then the shading doesn't correspond to the orig-
inal model. What model does it correspond to? In other
words, what is the smooth surface which, when ren-
dered accurately, has the same appearance as a Phong-
shaded polygonal model? That's the surface Phong
shading pretends actually lies underneath.

Often we know what we want that surface to be,
because we started there. For example, if we begin with
acylinder, chop it up into polygons, and render the poly-
gons with Gouraud or Phong shading, we would like the
final rendered picture to have the same intensities that
we'd get from an accurate point-by-point rendering of
the original cylinder. Even when we don’t start with a
smooth mathematical object, we often imagine that the
polygons form a framework over which an elastic sheet
stretches; this sheet is conceptually the smooth surface
we want to represent. How close do these shading meth-
ods come to these preferences?

Before we plunge in, I'd like to make the standard dis-
tinction between the two very separate ideas often
lumped together as “Phong shading.” The first—Phong
normal interpolation—is the process of computing a
point’s surface normal by linear interpolation of the
components of two normals at either end of a line con-
taining that point. This normal may then be used as part
of a shading equation that takes into account specular
highlights in an empirical manner—Phong illumination.
Throughout this article, I will deal only with perfectly
diffuse surfaces lit by a single light source, so Phong illu-
mination isn't part of the discussion. And we will assume

that the light source is conveniently located at infinity ~ Andrew
(so the direction in which we look at that light doesnt Glassner
change from point to point over the surface).

So here, “Gouraud shading” means the process of Microsoft
interpolating a color component to find intermediate Research

color values across a polygon. And “Phong shading”
means interpolating surface normals to find intermedi-
ate normals that we then evaluate with respect to the
light source to find a color for that point.

Under the surface

Let’s look first at Gouraud shading. To keep this dis-

cussion simple, we’re going to do everything in 2D.
Suppose we’re rendering the top half of a cylinder.
Figure 1a shows the basic idea: The purple curve is the
cylinder, and the four yellow lines delineate four polyg-
onal facets that approximate the cylinder. There is one
light source, directly to the northwest. Figure 1b shows

Further Reading

You can find lots of interesting papers on Phong shading; here
I've listed just a few. A nice discussion of Phong shading appears in
Tom Duff's paper, “Smoothly Shaded Renderings of Polyhedral
Objects on Raster Displays,” pages 270-275 of the Siggraph 79
conference proceedings. Gary Bishop and David Weimer offer a
way to speed up the computation in “Fast Phong Shading,” pages
103-106 of the Siggraph 86 conference proceedings. A famous
paper by Bui-Tuong Phong and Frank Crow on smoothing out
Phong-shaded images is sadly all but unavailable; the official
citation lists “Improved Rendition of Polygonal Models of Curved
Surfaces” in Proceedings of the 2nd USA-Japan Computer Conference,
1975. Nelson Max has investigated smoothing out models in a
variety of ways, so that silhouettes and intersections are rounded as
well, in “Smooth Appearance For Polygonal Surfaces,” published in
the Junie 1989 issue of The Visual Computer, pages 160-173.

Recently, C.W.A.M. van Overveld and Brian Wyvill described a
clever method for changing the normal-interpolation scheme for
Phong illumination with highlights. Rather than interpolate the
normal, they interpolate the highlight vector, then derive the shade
from a table lookup. They described their work in “Hi-speed, Hi-fi,
Hi-lights: A Fast Algorithm for the Specular Term in the Phong
lllumination Model,” which appears in the Journal of Graphics Tools,
Vol. 1, No. 2, pages 25-30.

IEEE Computer Graphics and Applications 83

Andrew Glassner’s Notebook

1 Gouraud shading applied to a
cylinder. The purple curve is the
original cylinder, approximated by
yellow facets. The single light
source is directly to the northwest.
The green curve is shape derived
from the shading. (a) A four-facet
approximation and (b) its intensity
profile. (c) An eight-facet approxi-
mation and (d) its intensity profile.
(e) A 50-facet approximation and
() its intensity profile.

2 The geome-
try behind
diffuse shading:
(a) The normal
and light make
an angle 6.

(b) Only two
candidate nor-
mal vectors
make an angle 6
with the light.

3 Gouraud
shading applied
to a sine curve.
The images are
arranged as in
Figure 1.

the intensity profile created by Gouraud-shading the
yellow facets. We want to find out what surface this
intensity profile represents.

March-April 1997

Because everything is so simple,
we can use a very primitive shape-
from-shading algorithm. The first
step is to recall the basic equation of
Gouraud shading that relates sur-
face normals and illumination
geometry. For a perfectly diffuse,
grayscale world,

I=ka(N-L) =kqcosO

where I is the resulting intensity, kq
is a scalar that controls diffuse
reflectivity, N is the (unit-length)
surface normal, and L is the (unit-
length) vector to the light source.
Figure 2a shows the geometry of the
situation.

In Gouraud shading, we evaluate
this equation only at the facets’ ver-
tices, and then interpolate the value
of I across the facet. To find N ata
vertex, we often average the values
of the facets that share that vertex.
For this column, I had access to the
underlying curved shapes, so I used
the actual surface normal comput-
ed from the surface at that vertex. If
the normals at the endpoints are P
and R, then we compute Ip and I and linearly interpo-
late them to find the Gouraud intensity I (for utter sim-
plicity, let’s assume that kg = 1):

Ie=olp+(1-o)lg=0(P-L) + (1-c)(R-L)

In shape-from-shading, we need to invert this equa-
tion: we're given I (the shade), and we want to find N
(which reveals the shape). Then we easily find that
0 = cos ! (I). Given the light source direction L, only two
vectors in the plane make an angle 0 with L, as Figure
2b shows. The quick-and-dirty approach (which works
well here) picks the choice closest to the neighboring
surface normals. To start this process, you guess (or
cheat) to get one normal somewhere on the surface,
then work outward from there.

In Figure 1a, I knew that the normal at the far left
pointed almost due west, so that was my starting nor-
mal. Then I marched across the intensity graph in Figure
1b, looking up I, computing 8, and choosing the closest
N. To plot the surface, I drew a little green line perpen-
dicular to N that had a horizontal span of one pixel start-
ing where the last bit of surface ended. Then I just
marched on to the next pixel, got the next I and 0, and
continued the process.

Notice that the curve is, in fact, smooth. That's why
Gouraud shading looks smooth—it's faking this smooth
surface. But there’s something wrong, because the curve
seems to rise too high over the underlying faceted
approximation. Remember that this green curve repre-
sents the shape of the underlying surface. Well, is it real-
ly such a problem? Notice that the rightmost
three-fourths of the curve tracks the facets (and the

cylinder) pretty well, but it’s just too high. Since the
light’s at infinity, and we’re not using the Gouraud val-
ues to compute depth information, this isn’t really a
problem—but it is worth thinking about. Why does it
gowrong?

The Gouraud surface rises up because the interpo-
lated shade values in the leftmost segment don’t do a
good job of tracking the actual shade values of a smooth
cylinder. Each of those little errors accumulates along
the facet. The problem here is not too few facets, but
that the illumination over the facets doesn’t match the
illumination that would derive from the actual cylinder.

Figures 1cand 1d show the same process repeated for
eight facets. The situation looks quite improved. More
facets means more places where the Gouraud shading
locks to the actual computed illumination values.
Figures 1e and 1f pump up the subdivision to 50 facets,
and now the surface implied by Gouraud shading
matches the underlying cylinder very well.

Let’s try the same process with a sine curve. Figures
3a and 3b show the four-facet approximation (the mid-
dle two facets are colinear and look like one long
straight line, but they actually have a shared vertex
where they cross the purple sine curve). The intensity
profile is five facets, not four, because we've clipped it
at 0. (Otherwise we’d have to suck the photons out of
your eyes when you look at the rendered image, and
while not particularly painful, this can be dangerous.)
It’s reassuring to see that crinkly little sine-wave-ish
curve in the center, but it’s not really correct for the sur-
face. Of course, we're asking way too much of Gouraud
shading to try to handle this much surface variation
with only four facets, but it’s interesting to see that it
still gets things vaguely right.

Figures 3b through 3e show the 8- and 50-facet ver-
sions, respectively. As you would expect, things get
much better with improved subdivision.

Approximately normal

Let’s now turn to Phong normal interpolation. We will
use exactly the same shading equation presented above,
but we'll change how we find the normal. Just as in
Gouraud shading, Phong shading finds the normals at
the vertices of the polygon. But in Phong shading we
next interpolate the normals across the polygon’s face,
then recompute the illumination value at each point.

Just how to interpolate the normals has been a subject
of much debate, and we'll return to it below. For now,
though, we’ll use the method originally proposed by
Phong and most widely implemented. If P and R are the
normals at the two ends of a line, then the normal Q at
a point between them that cuts the line in the ratio c.can
be found from

_oP+(1-a)R
lo® +(1- Rl
So, we just linearly interpolate each of the components,

then normalize the result. Then we plug it into the shad-
ing formula to find the Phong intensity Ip:

Ip:Q-L

Figures 4a and 4b show the same 4-faceted cylinder
that we used in Figure 1, only now we've used Phong
shading. It’s easy to see how much closer the derived
curve follows the underlying surface. It also links up
with the far point of the cylinder. Figures 4c through 4f
show the 8- and 50-faceted cylinders; the match in
Figure 4e looks about perfect.

Figure 5 shows the same sine wave as before. The
green curve almost looks like a B-spline built on the con-
trol polygon of the yellow facets (but it doesn’t stay with-
in the convex hull they define). Notice how much more
symmetrical the figure is compared to the Gouraud-
shaded version.

IEEE Computer Graphics and Applications

4 Phong shad-
ing applied to a
cylinder.
Compare to
Figure 1.

5 Phong shad-
ing applied to a
sine curve.
Compare to
Figure 3.

85

Andrew Glassner’s Notebook

Bright answers

Let’s compare the Gouraud and Phong illuminations.
Tom Duff expanded out the dot product in his 1979
paper to find

Ll oP+(-o)R
‘aP-v—(l—o:)R‘

=(IP'L+(1*O!)R' L
|cxP+(l—a)R.|

Ig

=‘aP+(1—a)R|

L

Thus, Phong shading produces the same values as
Gouraud shading, except scaled by a normalization fac-
tor that is always in the range 0 to 1. So in equivalent sit-
uations, Phong shading will always produce a brighter
image than Gouraud shading. Remember that this has
nothing to do with highlights—we’re simply looking at
the purely diffuse component here.

Tom observed that sometimes people talk about
speeding up Phong shading by skipping the renormal-
ization step—that is, you interpolate the normal com-
ponents, but you don't bother scaling the result to give it
unit length. In other words, the denominator in the
above equation is assumed to be 1, which means that this
procedure would compute exactly the same values as
Gouraud shading. Sure, it's slower, but it’s more expen-
sive. Figure 6 shows the intensity profiles for Gouraud
and Phong shading overlaid for the cylinder and the sine
wave, You can see that the Phong values are always the
larger of the two.

What is the nature of this normalization factor?
Figure 7 shows the geometry of the situation; we're
basically sweeping through a triangle to find the inter-
polated normal, then extending it to reach the unit cir-
cle. The catch here is that we’re not stepping by equal
angles. Because we're interpolating components by
equal amounts, we're stepping by equal lengths along
the chord. Figure 8 shows a plot of the length of the
interpolated normal as a function of « for various val-
ues of 6.

Who's to say what's normal?

This whole process of interpolating normal compo-
nents seems pretty suspect to a lot of people, myself
included. After all, why should that be the best way to
interpolate normals?

The answer, of course, is that it’s not the best way—
but there is no better way. It’s an arbitrary hack based
on the assumption that the default shape resulting from
this interpolation is a reasonable match for the under-
lying shapes we’re modeling with polygons. Other inter-
polation methods will produce other types of curves. As
with any approximation, sometimes one type of guess
will be better than another; there's no “right” way to
interpolate normals unless you know what kind of sur-
face you're trying to match.

Sdill, it’s interesting to look at alternatives. One of the
most popular approaches interpolates the normal in
equal angular steps rather than equal steps along the
chord. So we want a formula to find the interpolated
normal Q between P and R as a function of o, which is
the percentage of the angle between the extremes. This
is the equal-angle interpolation formula.

My favorite geometric derivation of this formula was
developed by Frits Post. Take a look at Figure 9. The
point C lies at the center of a circle of unit radius. I've
marked off the two extreme vectors P and R, which both
have unit length. We're going to write Q as a linear sum
of Pand R, or Q = B,P + :R. What are these two scal-
ing factors?

We'll start by labeling a bunch of angles and lengths,
which makes finding the unknowns pretty simple. For
convenience, I'll write the point at the tip of any vector
as that vector’s name without boldface; that is, point P
is at the tip of vector P. Angles will be identified by the
three points that compose them (for example, ZQPC),
though when it’s unambiguous I'll just use a single point
(suchas £P).

In Figure 9 I've marked points P“and R’, the tips of the
scaled vectors P’and R”. Then we have a parallelogram
formed by CP'QR’. Note that the line QP is not in general
tangent to the circle. ZPCR is 8, our original angle
between the vectors P and R. And ZPCQ is the interpo-
lated angle, y = 08. So ZQCR is 8— . Because CR is par-
allel to PQ, ZCQP’is the same as ZQCR’, or 8 — y. That

just leaves /P, which must be m— 8. By construction,

6 Phong shading (cyan) is always brighter than Gouraud shading (purple). (a) The intensity profiles for the 4-facet cylinder, (b) the 8-
facet cylinder, (c) the 50-facet cylinder, (d) the 4-facet sine wave, (€) the 8-facet sine wave, and (f) the 50-facet sine wave.

86 March-April 1997

|CP’| =By and |CR'| = P

Now we can use the law of sines to write down the
relationships between angles and lengths in triangle
P1QC, and solve:

sinP’ _ sinQ _ sinC

fod e pd

Recalling that sin (r—0) = sin (8), we can replace these
distances with the lengths we've assigned them:

sinf _ sin(6-w) _ siny

1 By B,

Solving for B1 and B2 yields

in(6-y) sin
e

siné@ sinf

So our interpolation formula for
Q(o) leads us to

_sin(6-w) p. SV o
sinf sinf

Qa)

where y= 0. You can prove to your-
self that this doesn’t require a nor-
malization step; in other words, the
vector Q computed by this formula
always has unit length.
Equal-angle interpolation will
yield different results than compo-
nent interpolation, but how differ-
ent? Figure 10 shows a comparison
of the two techniques on a two-
element version of the sine curve.
This is about as extreme a test as you
can hope for, because the normals
are almost antiparallel at the two
ends. The two techniques yield pret-
ty much the same intensity profile.
Under less severe conditions the two
methods are usually very close—
much closer than Gouraud and
Phong shading. n

7 When interpolating normals
using component interpolation, we
effectively move along a straight
line between the two endpoints.
We step in equal increments along
this line, not in equal angular steps
between the extremes. The interpo-
lated normal must then be scaled to
unit length.

8 The length s of the interpolated
normal as a function of the angle 6
between the extremes and the
interpolant o between them. Note
that when the angle is small, the
interpolated lengths are very close
to 1. When 6 = 11/2, the normal at
o = 0.5 has length 0 and is undeter-
mined. We divide by the value in
this plot to scale the interpolated
normal to unit length.

9 The geome-
try behind
equal-angle
interpolation.

10 A comparison of intensity
profiles for equal-angle interpola-
tion (in yellow) and Phong shading
(in purple) for an extreme case.

IEEE Computer Graphics and Applications 87

