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Poker players fold. Film directors cut. Recording
engineers tape. In this column we’ll do all three. In
IEEE CG&A’s July and September 1996 issues I discussed
how to fold interesting polyhedra using origami tech-
niques. The idea there was to build 3D shapes from
square or rectangular pieces of paper by simply folding
them. This time I'll throw out that restriction, and use
scissors and glue as liberally as folds. Actually, we’ll only
use scissors to cut out the initial shape. After that, just
fold and glue.

My motivation is the same as before: A good 3D visu-
al imagination is valuable for anyone working in 3D
graphics. An excellent way to develop that imagination
is to build models and hold them, turn them, and study
them. Building them yourself, you benefit from the
physical process of assembly—you really feel how the
pieces fit together, which deepens your understanding
of the pieces and their relationships. I find that building
models helps me keep my 3D visual eye tuned up and
active.

We'll begin, as before, with the Platonic solids. I'll
show an unfolded shape, such as a tetrahedron made of
four equilateral triangles, and include small assembly
flaps. Each solid line, including the ones between the
triangles and the flaps, indicates a mountain fold—this
means that you should fold the pieces of paper on both
sides of the line away from you so that the fold itself rises
toward you. The dashed lines are valley folds, which
recede from you.

Construction tips

To build these models, I recommend card stock—not
as heavy as thick cardboard, but stiff enough to resist
buckling. Something a little thicker than a standard
business card should do the trick. You can buy this sort
of paper at any art or stationery store.

You'll also want to work larger than the diagrams. I
recommend two to three inches for most edges. It's usu-
ally advantageous to work as large as possible—larger
pieces cover up minor errors in measuring, folding, and
cutting, and are usually more satisfying to hold and
manipulate. I generally use one of three different
enlargement methods, depending on the diagram’s
complexity. The first is to draw the diagram directly onto
the card stock, measuring it out from the original dia-
gram'’s geometry.

When [ don’t want to measure right on the surface, I
use two other approaches. Both begin by creating a full-
size drawing of the diagram on a big piece of paper (or
a few pieces of paper taped together), either by mea-
suring it out or using an enlarging photocopier on a pre-
existing diagram. One way to transfer this full-size
drawing to the card is to first scribble on the back of the
paper with a soft-lead pencil. Then tape the paper over
the card stock and draw over the diagram with a sharp
pencil; this transfers the lead from the back of the paper
onto the board, leaving a light line for cutting and scor-
ing. For some diagrams, I tape the paper down and use
a pin to make a small holes through the paper onto the
board underneath, usually at intersection points and
external corners. Then I make creases and cuts with the
help of a straight edge lined up to the pinholes.

To prepare for folds, I recommend scoring the card by
running a blunt butter knife over the fold lines. You can
also bear down with a ballpoint pen—you can use one
without ink if you don't want to leave a mark.

Folding up the models may take some trial and error,
particularly those at the end of the article. I recommend
artist’s layout tape for holding the pieces together while
you play with them. This tape uses the same tacky but
removable adhesive that’s on the back of those yellow
sticky notes.

You can use any regular glue to assemble the flaps.
But be careful if you’re decorating your model using
paper glued over the thicker card. You'll want to remove
the paper from the flaps and their destinations so that
you're gluing the thick card directly to itself. If you don't
want to use glue, you can use regular sticky tape. You
can place the tape inside the model if you don’t want it
to show, but that becomes tricky to apply. Alternatively,
you can place the tape on the outside. I find this is the
best way to play with the models, because it lets you take
them apart easily to study the relationship between the
2D diagram and the 3D model. When you want to make
them permanent, glue’s the way to go.

Nets and efficiency

The unfolded tetrahedron in Figure 1a (on the next
page) is the simplest of the Platonic solids. The stan-
dard hierarchy then continues with the cube, octahe-
dron, dodecahedron, and icosahedron. Figure 1 shows
the unfolded diagrams, or nets, for these solids.
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If you're just making a few little models for fun, then
it’s fine to draw the net somewhere on a piece of paper
and cut it out. But suppose you need to make thousands
or millions of models—one per rectangular piece of
paper. Can different nets give you more or less efficient
use of the area?

Figure 2a shows the most traditional net for the cube.
When considering efficiency, we'll ignore the flaps.
Assuming an edge length of 1 for each square, the net
has an area of 6 and sits in a rectangle of area 12, as in
Figure 2b. So the efficiency equals 50 percent. If effi-
ciency were really an issue, you'd want to use that empty

1 Nets for
Platonic solids:
(a) tetrahedron,

(b) cube, ¢ area within the rectangle, Happily, just as 3D cubes fill
(c) octahedron, | space, these 2D nets tile the plane, as in Figure 2c. So
(d) dodecahe- G R the efficiency goes up to 100 percent in the middle of
dron, and 4{ | ) . the paper where they tile, and you only lose the little
(e) icosahedron. | (€) N SN (& \ e bits of trim at the boundaries of the sheet.
p VA V4 = Figure 3 shows another net for the cube. Although the
AN AN N AN pieces have been moved around quite a bit, this netalso
NG NN N \ has an efficiency of 50 percent and tiles the plane, Figure
y Fo— T 4 shows vet another net that tiles the plane and also
NN SN N g . - 5
ARAVARVARVAR N/ achieves an efficiency of 60 percent. | don’t know of a
NN N N N net for the cube with better than 60 percent efficiency.
NN N N\ N Figure 5 presents the net for an octahedron, with an
(e) efficiency of 50 percent. It also tiles. A little transposition
of the net again yields 50 percent, as in Figure 6. Finally,
2 (a) A net for
the cube, ==
(b) Showing 50
percent efficien- |
cy. () Tiling the
net. ]
(a) (b)

3 (a) A second net for the cube.
(b) Showing 50 percent efficiency.
(c) Tiling the net.

(a)
4 (a) A third net for the cube.
(b) Showing 60 percent efficiency.
(€) Tiling the net. | ]
(a)
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5 (a) A net for the octahedron. (b) Showing 50 percent
efficiency. (c) Tiling the net.

2L ;

(b)
7 (a) A third net for the octahedron.
(b) Showing 67 percent efficiency. () Tiling the net.

9 The polyhedral flower.

Figure 7 shows the best efficiency of all—67 percent.

Although each net has eight equilateral triangles, they
also have the necessary connectivity. When playing with
nets, make sure you don't accidentally move the pieces
around so that you're unable to fold the desired shape.

Finally, in Figure 8, I can't resist providing the net for
the Archimedean solid called the cuboctahedron, which
was Buckminster Fuller’s favorite shape.

Flowering polygons

So far we've folded up flat diagrams into static 3D
shapes. You can build all kinds of dynamic 3D models
from very simple nets. One of my favorites is called sim-
ply the polyhedral flower. Figure 9 shows the flower,
with the petals inside just rising and starting to spread.

@) (<)

6 (a) A second net for the octahedron. (b) Showing 50 percent efficiency.

(c) Tiling the net.

Figure 10 shows the nets for the flower—you’ll need
both of these. Figure 10 also shows suggested coloring.
If you use this scheme, use the same coloring for each of
the two pieces. Cut them out carefully, and score the
mountain and valley folds very precisely; accuracy will
pay off in a more stable and beautiful model. Figure 11
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8 The net for
the cuboctahe-
dron.

10 The net for
a polyhedral
flower. The two
pieces are glued
to one another
to make a long
cylinder, col-
ored side out-
ward.

11 A piece of
the flower
ready for
assembly.
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14 The net for a kaleidocycle.

shows how a piece should look when it’s ready for assem-
bly (the photos use a slightly different color scheme).
When the two nets have been scored, glue the flaps at
the bottom of each piece to the top of the other, so that
you create a cylinder with the colored side facing out.

Now comes the tricky part—but it's also the fun part.
1t took me a bit of fumbling before I figured out how to
get this thing together, but when assembled it’s quite
lovely. I'll describe how I finally managed it, but there’s
nothing quite like holding the model in your hands and
seeing it. Expect to experiment a bit before you get there.

Most importantly, you must have good folds. Holding
the cylinder so that its axis runs vertically, pull togeth-
er the triangle pairs on the top until they begin to come
together, causing the diamond shapes on the outside to
fold inward. Figure 12 shows how this should look. You
can use artist’s temporary tape to hold the folds togeth-
er. Now do exactly the same thing on the other side.
There’s no phase shift here—that is, the model is exact-
ly symmetrical (except for color) on both sides of an
imaginary plane that cuts perpendicular to the axis of
the cylinder. When you're done, you'll have something
like a polygonal donut. » ’

Now comes the easy part. Take off the tape and let the
top part flop open a little while keeping the bottom
points together. Pull out on the red points at the top
while pushing in on the yellow points at the bottom. This
will cause the whole ring to rotate around itself. The top
partwill open up into a hole, the points from below will
pop up, and the points will begin to spread apart. If you
continue to rotate the ring, it will settle into a stable posi-
tion with the center part forming a fountain of color in

July/August 1997

13 A partly open kaleidocycle.

the midst of an enclosing cup, as in Figure 9. You can
continue to turn the ring around and around, causing
the flower to fold into itself and then bloom again.

Kaleidocycles

The kaleidocyele is one of the most interesting
dynamic polyhedral models. A ring of nonregular tetra-
hedra, it rotates like the flower but doesn’t open up.
Figure 13 shows a kaleidocycle. To really appreciate it,
you need to build one and turn it in your hands. The
amazing thing is that the pieces just turn and turn indef-
initely, even though the tetrahedra are only hinged
along two edges.

Figure 14 shows the net for a hexagonal kaleidocycle.
Note that the triangles are not equilateral, but isosceles.
The long altitude of the triangle is the same length as
the short side it is erected from. You can work out the
dimensions from basic trig; if the short leg has length 1,
the long legs are each of length V1.25. The acute angle
iscos™'(0.6) = 53.13 degrees; the other two angles equal-
ly divide what remains of the 180 degrees allotted to
every triangle—they’re each about 63.43 degrees. You'll
only need one copy of the net to build the model.

Figure 15 shows the folding process. It’s a lot easier
to construct than the flower. Begin by forming a ring, so
that the top colored triangles overlap with the uncol-
ored ones at the bottom. Put glue on the bottom flaps
and adhere them to the bottom of the upper triangles.
Then put glue on the flaps at the end and tuck them into
the hole at the other end, forming a ring. As you turn
the ring, it will stay together as a single stable structure,
showing you four distinct images as you turn the pieces.
It’s fascinating to watch the shapes move around one
another, seemingly unfolding forever.

If you're interested in decorating your kaleidocycle,
Figure 16 shows a schematic of how the pieces connect
when they form images. The four colors make up the
four images, and the letters indicate which arrows join
together. If you get continuity across the arrows, then
you'll be able to form a separate image from each of the
four sets of six triangles.

For an even greater challenge, you can try to get con-
tinuity around the ring as well as within each image—




15 Constructing the kaleidocycle. (a) Form a
tube and glue the uncolored pieces under the
colored ones. (b) Tuck the end flaps into the
open slot. (c) The assembled kaleidocycle.

this is indicated by the white arrows
in Figure 16. Figure 17 shows the
full-blown version of this, which pro-
vides the symmetry constraints to
pull off the more complicated conti-
nuity. Readers of this column will
recognize the “F” motif as my
favorite way to indicate an oriented
tile. All tiles with the same color here
should have the same internal pat-
terns. Notice that although there are
72 tiles, only 24 different designs are
used. There are 12 pairs—the ones
that run vertically in the figure. These triangles remain
adjacent in the unfolding pattern because they're adja-
cent in the net. There are also 12 quadruplets, each
arranged in what looks to me like butterfly wings.
Technically, these little symmetry markings are sufficient
butnot necessary. That s, they will do the job, but they’re
overkill, You really only need continuity of design across
the edge. As long as they mesh where they touch, the
contents of every tile can be different. )

If you use Figure 17 as the decoration for a kaleido-
cycle, don’t get confused. When I folded this to make
sure I drew the figure correctly, I started folding alon}g
all the solid lines, which is unnecessary and makes for a
very floppy model. These lines are just the boundaries
around each tile, not the folding pattern—that’s in
Figure 14.

Happy cutting, folding, and taping! n

16 The connectivity relations
between the triangles for the kalei-
docycle’s four images. Arrows with
the same letter are adjacent in the
folded model. The white arrows
indicate edges that share continuity
during rotation.
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17 The "F”
motif indicates
the tile's orien-
tation. Tiles
with the same
color contain
the same deco-
ration. There
are 12 pairs and
12 quadruplets
in the 72 tiles.
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