Andrew Glassner’s Notebook

Inside Moiré Patterns

Moi ré patterns are very cool. They're produced by
the interaction of two overlaid patterns. You saw
moiré effects any time you looked through two pieces
of fine-mesh screen and noticed the broad dark bands
that appear as the meshes moved or as you moved your
head.

Created deliberately, moiré patterns are an inexpen-
sive special effect. Some children’s books consist of print-
ed pages plus a transparent sheet with a black pattern
on it. By waving the transparent sheet over the book’s
pages, you can make waterfalls flow and clouds float by.

Moiré patterns also creep in where they’re not want-
ed. When you scan a photograph, the dot pattern used
originally to print the image can interact with the digi-
tizing dot pattern used by the scanner, sometimes result-
ing in bands or blocks of light and dark across the image.
Badly registered color screens can interact in a similar
way, so what ought to print as a smooth field of color
looks something like a busy plaid.

Moiré patterns also have a practical side. The field of
moiré interferometry uses these patterns to measure very
small displacements in surfaces and thin materials.

The principles behind moiré patterns aren’t very com-
plicated. With a little geometry, it's easy to understand
where they come from and how to create and control
them.

Gratings

To demonstrate moiré effects, I'll use a very simple set
of patterns: sheets of parallel lines, called gratings (see
Figure 1). At the end of the column I'll show examples
of grids, dots, and circles creating moiré patterns.

In a grating, the black lines all have the same width,
as do the white spaces between them. We can think of
one adjacent pair of black and white bars as defining the
fundamental region of the pattern—rubber-stamping
that pair of bars side by side creates
the grating.

A grating is characterized by two
numbers. The pitch, usually denot-
ed by g, describes how closely
packed the lines are. Now, because
these are real lines and not mathe-
matical abstractions, they have
some width. Referring to the verti-
cal lines of Figure 1, I find it conve-
nient to think of the pitch as the
distance between the left-hand

edges of neighboring black bars. The ratio, usually writ-
ten R, is the fraction formed by the width of the black
bar divided by the width of the white bar. A ratio of 1
means that the two bars have equal width.

Extension

Let’s begin by creating two gratings, each with a ratio
of 1. The first grating, p:, has more lines per inch than
the second grating, p», so pitch g is smaller than g2. We'll
pick the pitches to be nearly similar, say within 5 per-
cent of each other. Let’s overlap the two gratings, as in
Figure 2, so that the lines are parallel. This kind of align-
ment is called extension.

You can see that a new pattern emerges, consisting of
black bars that seem to represent a much wider grating.
These bars, called moiré fringes, are, in fact, equidistant.
The fringes come about because the two gratings “beat”
against one another. What is the pitch G of this new
pattern?
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1 Agratingisa
set of alternat-
ing black and
white bars. All
the black bars
are the same
width, as are all
the white bars.
The pitch gis
the width of
one pair of bars.

2 (a) Grating
. (b) Grating
pz. (<) A moiré
pattern created
by pure exten-
sion—simply
overlaying (a)
and (b).
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3 The two
gratings of
Figure 2 shown
in schematic
form. The peri-
od of the result-
ing moiré
pattern is G.

4 The gratings
of Figure 2.

(a) The gratings
are aligned left.
(b) Grating p2
has been trans-
lated a distance
g2/4. (c) Grat-
ing p2 has been
translated a
distance g2/2.

Figure 3 provides a way of answering this question.
Here I've drawn a simple intensity profile of the bars as
waves—a value of 0 means black, and 1 means white.
At the left edge of the figure, the two gratings are
aligned. But after just one cycle, they've slipped a lit-
tle—the finer (or more compact) grating p1 has already
started into its second white bar before the coarser grat-
ing p, has finished with its first black bar. As we scan the
pattern from left to right, we see that p; falls farther and
farther behind py, until eventually it falls one complete
cycle behind and the two patterns align again. It’s just
like one runner lapping another around a track.

How does this create the moiré pattern? Consider that
the page you're reading this on arrives from the manu-
facturer completely white. The printing process deposits
black ink to block the ambient light reflecting off the
page and into your eye. So anywhere we’ve printed black
(due to either grating), the page will be black. Viewed
the other way, it’s only white where both gratings are
white. We can find the white regions by simply taking
the logical AND of gratings p: and pz, producing the new
pattern py. Notice that the black regions get wider as
you scan from left to right, then narrower again. This
composite pattern returns to where it started after one
full cycle, which takes up a distance G.

The cycle repeats when p; takes one more cycle than
p2. In symbols,

G= ngg:(n+1)g;

Bynoting that 1/g2 = n/Gand 1/g; = (n + 1)/G, wecan
eliminate n and write

i I
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Oftenit’s convenient to speak of frequency rather than
length of the cycles (or waves). Conventionally, frequen-
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cy fis the inverse of wavelength. Suppose we have some
nice system of units so that for any given grating pitch g,
the corresponding frequency f is simply 1/g. Then we
could write this equation equivalently as

F=fi-f2

The frequency of the repeating black bars is simply the
difference in the frequencies of the two gratings.

Amplification

Now suppose we slide over one of the gratings with
respect to the other. What happens to the black bars?
Well, we know that the distance between them doesn’t
change, since that depends only on the difference in the
pitches (or the frequencies). But does the position of the
bars move?

Suppose that grating p, moves by some integer mul-
tiple of its pitch gz. Then everything lines up exactly as
before, and there’s no change. But suppose that p; moves
to the right by g»/2. Intuitively, we would expect the
fringes to move half their separation, or G/2. Similarly,
if we move ps to the right by g2/4, we'd expect the bars
to move to the right by G/4. This is exactly what hap-
pens, as illustrated by Figure 4.

This phenomenon of fringe amplification comes
about simply because everything is linear—moving the
grating some distance between its bars moves the moiré
fringes by a similar amount. In symbols, if we move
grating p» by a distance 8, the moiré pattern moves by
a distance A, which is simply & scaled by the ratios of
the two patterns:

&2
The term amplification here refers to the large move-

mentof the fringes in response to the smaller movement
of the underlying grating.

Rotation

Let’s return to our original two
gratings, pr and p2, with equal ratios
and slightly different pitches. This
time we'll superimpose them so that
they’re slightly tilted with respect to
each other. To make things easy,
we'll assume that the lines of p; are
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vertical, and the lines of p> are near-
ly vertical—say within about 10
degrees of vertical. What happens?

Figure 5 shows the answer. The
fringes reappear as black bars with
spikes on the side, separated by white
rhombuses. If you squint, the indi-
vidual lines of the gratings disappear,
and all you see are the thick bars of
the fringes themselves. In practice,
this often happens—the gratings are
all but invisible, but the moiré fringes
reveal their relationship.




What is the pitch of these new
fringes, created by pure rotation?
The geometry of this pattern
appears in close-up in Figure 6.
Each white space is a parallelogram
with dimensions dictated by the
pitches and ratios of the gratings
and the angle 6 between them. We
will assume that both gratings have
the same pitch g and that the lines
are very thin, so the black-to-white
ratio R is nearly zero.

The parallelogram ABCD is the white region; E is the
point of intersection of line AD and the line through C
perpendicular to BC. We know that distance CE is the
pitch g. We know that tan & = (CE)/(DE), so distance
DE = g/tan 6. If we erect a perpendicular on line AB such
that it passes through D, the distance FD is also g
(because it's the space created by the second grating).
Since AD is the hypotenuse of right triangle ADF, we can
see g = AD sin 0, or AD = g/sin 0. So the pitch of the
fringe, G, is given by

G=(AD)+(DE)

s & . ¥

sin @ tan @

1 cos 6
Bl =
[sm 0 sin 6]

=g(1+cos 6) /sin@

We assumed that the lines were very thin, but that
doesn't change the analysis. If the lines get thicker, the
parallelogram formed by the white space will get small-
er, but the pitch G won’t change.

However, if we're willing to assume that the angle 0 is
small and that the ratio is 1, we can make some simpli-
fications. Figure 7 shows the reduced geometry. Since
0is small, we can pretend that the line BD is almost ver-
tical (that is, perpendicular to both AD and BC). Then
we can observe that BD = g/2 and AD = G/2, and write

tan® = BD/AD = (g/2)/(G/2) = g/G
For small angles, tan 8 = 0. Using this and solving for G,
we find G = g/, which is the standard formula for the
moiré pitch G for small rotation . In terms of frequen-
cy, F = f 0, which tells us that the fringes get closer
together (and thus harder to resolve) as the angle gets
larger. This argues for using smaller angles. But as we
decrease the angle, the fringes can get hard to discern.
In practice, picking the right angle and the right pitch-
es of the gratings is critical to getting useful results.

Fringe sharpening

The fringes in Figure 5 are clear but quite wide. It
might be easier to locate their centers if the fringes were
narrower. We can make this happen with a technique
called fringe sharpening.

It’s actually quite simple to sharpen the fringes. Think
about their appearance for asecond: the black fringe aris-
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es when the two gratings lie atop one another. The long
spikes are caused by the angled grating cutting across the
white gaps in the vertical grating. If we keep the same
pitch in the angled grating but make the black bars thin-
ner (that is, we decrease the ratio), we will decrease the
width of the spikes. At the same time, increasing the thick-
ness (or ratio) of the vertical grating increases the area
of the overlaps, strengthening the fringes.

The sweet spot occurs when the ratios are reciprocals
of each other:

Ry =1/R

Figure 8 shows an example of fringe sharpening in
the case of pure rotation.

Vector addition

Another way to find the direction and interfringe dis-
tance of the moiré fringes is to use a little bit of vector
addition. For each of our gratings we can create a vector
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5 (a) A vertical
grating. (b) A
slanted grating.
(¢) The moiré
fringes resulting
from the overlay
of (a) and (b).

6 The geome-
try of a white

parallelogram
from Figure 5.

7 Simplified
geometry of
Figure 6 for

small angles.

8 Fringe sharp-
ening.

(a) Original
ratios.

(b) Reciprocal
ratios.
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whose magnitude equals the fre-

quency and whose direction is per-
F1. (b) Grating \ pendicular to the lines of the grating.
p2 and its vector b Figure 9 shows the idea, where vec-
Fz. (<) Vector F, £ tors Fy and F; are built from gratings
addition: Fy = i - p1and pa.
F1-F2. (d) The Fr \ The resulting moiré fringes are
(a) (b)

resulting moiré characterized simply by a new vec-

grating gener- (©) (d) tor, Py, given by
ated by Fu.
Fu=F-F
Note that this short vector indicates
alarger gap between the fringes than
between black bars in the original
10 (a) Grid p1. gratings, which is the same phenom-
(b) Grid p2. enon we've been seeing all along.

(c) Pure exten-
sion of the two
overlaid grids.
(d) Pure rota-

Grids, dots, and circles

So far, we've looked only at grat-
ings, which are sheets of parallel
tion: a copy of lines. We've all seen moiré patterns
p1 has been : ——— created by wire meshes, which are
placed over (a) (b) simply two sets of gratings at right
itself, rotated by angles to one another. Everything
5 degrees. that we've done for gratings can be
(e) Combined used to predict the interaction of two
rotation and meshes (or grids), simply by super-
extension: pz imposing the results. But the fringes
rotated 5 are much more interesting to look at!
degrees and Figure 10 shows the result of two
placed over p1. grids using pure extension, pure
rotation, and combined extension
and rotation. The two independent
sets of gratings combine to produce
the diamond fringes.

At the start of this column I men-
tioned that moiré patterns can pop
up when the dot pattern of a scan-
ner interacts with the dot pattern of
a digitized photograph. Figure 11
shows our three canonical cases for
two square patterns of dots. Of
course, the dots are nothing but the
points of intersection of the grid
lines in the mesh case, so we would
expect (and find) a lot of similarity

() (d)

11 The same between Figures 10 and 11.
sequence as ! A twist comes in when we start to
Figure 10, only | (a) (b) work with nonlinear elements.

using grids of
dots.

Figure 12 shows the interaction of
two circular gratings; here the pitch
equals the radial distance between
the insides of two successive bands,
or annuli. In Figure 12a I've over-
lapped two circular gratings with
near-equal pitches over a common
center. You can see the moiré fringes
come and go just like the linear
fringes in Figure 2. In Figure 12bT've
used two circular patterns of the
© (d O same pitch, but I've moved one of

100 November/December 1997



(a) (b) ©)

the circles with respect to the other. Finally, in Figure
12c I've combined the two effects, so the displaced sec-
ond pattern also has a slightly different pitch. A very
interesting set of curves arises. I suspect that a nice
explicit formula exists for this family of curves, but 1
don’t know what it is.

Wrapping up

We've only scratched the surface of moiré patterns
here. It's interesting to look at the interaction of linear
and circular patterns, elliptical patterns, and patterns
of any other kind of geometry you'd like to invent. Once
you get familiar with how to predict the effects of dif-

12 Concentric circles. (a) Different
pitches (pure extension).

(b) Identical pitches, but offset
centers,. (c) Different pitches and
offset centers.

ferent patterns, you'll find that it's easy to create new
ones on demand. You may also be able to cook up some
strategies for removing moiré patterns in cases where
they creep in uninvited. [ ]
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