
This month I’ll talk about two interesting relation-
ships between circles and lines. The first topic is

pretty simple but cool, and I suspect there’s a comput-
er graphics application out there that can use this to
run faster or better. The second topic is Ptolemy’s 
Theorem, which is a generalization of the triangle
inequality. I’ll show how it can be used to derive the
angle-addition formulas (which I always forget). Then
I’ll extend last month’s topic of reflection and show how
Ptolemy’s Theorem can be used to prove that Snell’s
Law and Fermat’s Principle of Least Time both lead to
the same geometry of refraction.

Circular powers
We’ll begin with an important property of lines and

circles that I haven’t seen mentioned before in graphics
literature. Figure 1 sets the stage: We have a circle with
center C and radius r, a point P not on the circle, and a
line s through P that intersects the circle at points Q and
R. We’ll write Cr(P) for the value of point P in the implic-
it formula for the circle. I’ll demonstrate the remarkable
fact that Cr(P) is the product of the distances |PQ| and
|PR|. In symbols, Cr (P) = |PQ| • |PR|.

To see this, we only need to write out the standard
intersection of a ray and a circle—this is the familiar alge-
bra that appears in every ray-tracing program. I’ll use
vector notation for two reasons. First, it’s a lot less messy
than writing out all the coefficients. Second—well, the
second reason is sneaky, as you’ll discover in a moment.
Writing out the value of the circle at an arbitrary point A,
its value Cr(A) may be written in vector notation as

Cr(A) = (A − C) • (A − C) − r2

= A • A − 2C • A + C • C − r2

We’ll write the line s as a parameterized ray with ori-
gin P and direction vector V = (Q − P). This means that
points on s are given by various values of t in the expres-
sion s = P + Vt. Plugging this into the circle equation to
find Cr(P + Vt) and then gathering terms of t, we find

0 = (P + Vt)•(P + Vt) − 2C•(P + Vt) + (C • C) − r2

0 = t2(V • V) + t[2V • (P − C)] + [(P − C)•(P − C) − r2]
0 = at2 + bt + c

The roots t0 and t1 of this quadratic equation are the
values of t, which generate points where the ray inter-
sects the sphere. Let’s find the product p of the two
roots—this will come in handy in a moment. Writing d
for the discriminant d=√ b2−4ac , we find

If we plug in the value for d, expand, and simplify, we
find

This is a nice general relationship to keep in mind for
quadratic equations.

Now back to business. Let’s assume that our direction
vector V is normalized, so V = (Q − P)/|Q − P|. This
means that the values of t corresponding to the roots of
the equation are exactly the same as the distances from
P to Q and P to R. That is, if t0 and t1 are the two roots
(and t0is the lesser one), t0 = |PQ|, and t1 = |PR|. Since
V = 1, then a = (V • V) = 1, and thus p = c/a = c. Using
our value of c from the quadratic formula above,

p = t0t1 = c = (P − C) • (P − C) − r2

which is simply Cr(P), the value of point P in the circle
equation.

So we have proven that the product of the distances
is the same as the value of P in the circle’s equation—
that is, Cr(P) = |PQ|•|PR|, as promised.

Notice that nowhere did we actually use the fact that
we were in 2D. The vector notation I used doesn’t care
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how many dimensions we’re in. That’s the sneaky reason
I used vectors—I was working with lines and circles in
the plane, but the result is equally true for lines and
spheres in space.

Ptolemy’s Theorem
Our second topic this month is Ptolemy’s Theorem.

Claudius Ptolemy (AD ~87~150) was an astronomer,
mathematician, and geographer who lived in Alexandria,
Greece. He wrote an early atlas—remarkable for the fact
that not only did he describe the places listed, but he also
included their latitude and longitude. His other major
work was a set of books called The Mathematical Collec-
tion. This was later translated into Arabic under the title
Al Magiste, or The Greatest. This title was later corrupted,
and the books are now often called the Almagest.

The Almagest consisted of 13 books giving early algo-
rithms for 2D geometry as well as an astronomical sys-
tem for the motion of the stars and planets. The Earth
and moon had their orbits centered on the Earth, while
everything else revolved around those centers. Such
geocentric systems remained popular until the Coper-
nican Revolution in the sixteenth century. Ptolemy also
gave an approximate value of πas 377/120 ≈ 3.141666,
which is accurate to one part in ten thousand—accurate
enough to sail a ship for a few weeks and then find a
port by eye.

One of the still-influential pieces in the Almagest is a
proof of what we now call “Ptolemy’s Theorem.” This can
be considered an extension of the triangle inequality.
Recall that the triangle inequality states that for any three
points A, B, and C in the plane, AB + BC ≥ AC. Ptolemy’s
Theorem gives a similar result for cyclic quadrilaterals.

A cyclic quadrilateral is a figure created by four unique
points on a circle. Figure 2 shows a generic cyclic quadri-
lateral, which I’ve labeled counterclockwise as A, B, C,
D. Ptolemy’s Theorem says that if you multiply the
lengths of opposite sides and add the products, this will
equal the product of the diagonals. In fact, equality only
holds if the points lie on a circle (just as the triangle
inequality is only equal when the points are colinear).
We will stick with the cyclic equality version here.

To prove Ptolemy’s Theorem, we’ll create an addi-
tional point K on line DB, such that ∠ KCD = ∠ BCA, as in
Figure 3. Without loss of generality, we will assume that
K lies closer to D than the intersection of CA and DB. We
will find two sets of similar triangles to determine the

relations that lead to the theorem. We will use unsigned
distances, so that |DB| =|BD|. Furthermore, to reduce
clutter I will leave the vertical bars off of the distance
measures. Unless I specifically refer to a pair of letters
as something like “arc AB,” AB will mean |AB|.

First, observe that ∠ CAB and ∠ CDB are both inscribed
angles that include arc BC, as in Figure 4. As we saw last
time, this means that these two angles are equal. Thus,
as Figure 5 shows, triangles ∆CAB and ∆CDK are simi-
lar, since both have two common angles. Because they’re
similar, we can write

or AC•DK = AB•DC = AB•CD

For the second set of triangles, note that ∠ BCA =
∠ KCD by construction. Adding ∠ ACK to both, we have
∠ BCA + ∠ ACK = ∠ KCD + ∠ ACK, or ∠ BCK = ∠ ACD, as
shown in Figure 6. Furthermore, both ∠ DBC and ∠ DAC
are inscribed angles including arc CD, which means
they’re also equal, as shown in Figure 7. And ∠ KBC =
∠ DBC. Thus triangles ∆BCK and ∆ACD are similar. Fig-
ure 8 shows them side-by-side. We can write a similar
pair of ratios as last time:
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or AC • BK =BC •AD. Now we’ll add these two equalities
together:

AC • KD + AC • BK = AB • CD + BC • AD
AC • (KD + BK) = AB • CD + BC • AD
AC • DB = AB • CD + BC • AD

This last line is Ptolemy’s Theorem. As promised ear-
lier, it tells us that for a cyclic quadrilateral, the product
of the lengths of the diagonals equals the sum of the
products of the lengths of opposite sides.

Angle addition
To get some experience with Ptolemy’s Theorem, we

can derive the formula for finding the sine angle-addi-
tion formula sin (α + β) = sin α cos β + cos α sin β.

We’ll start with a cylic quadrilateral of radius r, as
shown in Figure 9, with α = ∠ DBC and β = ∠ ABD.
Points B and D lie at opposite ends of a diameter, thus
BD = 2r. Recall that the law of sines tells us that for a tri-
angle ∆ABC, a/sin A = b/sin B = c/sin C = 2r. We use
this law to find AC = 2r sin B, where angle ∠ B = α + β.
Note that angles A and C are both right angles, because
they’re inscribed in the semicircles made by diameter
BD—thus we can label them with the sines and cosines
as shown.

Now we just write out Ptolemy’s Theorem, replacing
each length with its value from Figure 9, and simplify:

AC • DB = AB • CD + BC • AD 2r sin (α + β) • 2r 
= 2r cos β • 2r sin α + 2r cos α • 2r sin β

sin (α + β) = cos β sin α + cos α sin β

which is the standard formula for sin (α + β). I love it
when these things work out so nicely. The other varia-
tions, for example, cos (α − β), can all be found by plug-

ging in standard trig identities. Now we can move on to
a more challenging application.

From Snell to Fermat via Ptolemy
Refraction is an important part of our visual world.

Every transparent object bends light to some degree as
that light passes through it. This phenomenon gives rise
to everything from multicolored prisms to the ability of
our eyes to focus at different distances.

In January 1998 I wrote about proving the law of mir-
ror reflection by using the mathematical technique of
reflection. The two had a lot in common, which proba-
bly wasn’t too surprising. Now I’ll show how to use Ptole-
my’s Theorem to prove that Snell’s Law (an algebraic
relationship) leads to Fermat’s Principle of Least Time (a
physical hypothesis).

The law of specular reflection tells us what happens to
a ray of light when it passes from one medium to anoth-
er. When light passes through the boundary, or inter-
face, from an incident medium i (say, air) to a
transmitted medium t (say, glass), its speed v changes
from vi to vt. This causes the light ray to bend, as illus-
trated in Figure 10. We won’t discuss the mechanics of
that bending here; it’s covered in detail in most optics
and computer graphics texts.

People generally use two laws to compute the trans-
mitted angle θt: Fermat’s Principle of Least Time and
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Snell’s Law. We encountered Fermat’s Principle in the
January 1988 column when we looked at reflection: It
says that light takes the least amount of time to get from
one point to another. As in that column, we’ll assume a
world where light travels in straight lines. Suppose the
light travels from air point A to surface point S and then
to glass point G. Fermat’s principle tells us that the time
it takes to get from A to S to G must be a minimum. Given
A and G, our job is to find S.

Note that S is not simply on the line AG. Remember
that we’re looking for the least time of flight, which is
not necessarily the shortest path. We want to travel less
distance where the material is denser, even if it means
we travel farther in the more rarified medium.

In terms of Figure 10, we can observe that the time it
takes light to get from A to S is the distance divided by
the speed in the incident medium, or AS/vi, and simi-
larly the time from S to G is SG/vt. Thus we want to min-
imize AS/vi + SG/vt. In symbols, for any other  $S on the
surface, we want to show that the path A $SG takes longer
than ASG:

A famous geometrical relationship, Snell’s law tells
us where S is located. In terms of the geometry of Fig-
ure 10, Snell’s Law says

vt sin θi = vi sin θt

I will show that Snell’s Law and Fermat’s Principle are
equivalent. First assume Snell’s Law, and then Fermat’s
Principle is automatically satisfied. Let’s see how this
works. Figure 11 shows the basic setup. I’ve drawn a cir-
cle (C,r) through points A, S, and G. I’ve also drawn a
vertical line v perpendicular to the horizontal interface
h, and found the point B where v intersects the circle
(C,r) below line h.

First, we need to find the lengths BA and BG. Note that
∠ ASB forms an inscribed angle in the circle. Recall that
in the column on specular reflection we showed that an
inscribed angle of θ equals a central angle of 2θ. Figure
12 shows how to find the length of a chord UW in a cir-
cle (C,r). If V is the midpoint of UVW, then angle ∠ VCW
= θ/2, and VW =r sin (θ/2), so UW =2VW =2r sin (θ/2).
Returning to BA, the inscribed angle ∠ ASB is π − θi, so
the central angle is 2(π − θi), and therefore the length
of the chord is

BA = 2r sin (2(π − θi)/2) = 2r sin (π − θi) = 2r sin θi

By similar reasoning, BG = 2r sin θt.
Writing out our chord lengths and using Snell’s Law,

we find where k = 2rvi sin θt = 2rvt sin θi.
Now we’ll use Ptolemy’s Theorem. Since A, S, G, and

B all lie on a circle, in that order, we have

AG • BS = AS • BG + SG • BA

Substituting our lengths for BG and BA from above,  
BG r r
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This is the critical result. We’ll use it in a moment to com-
plete the proof.

For a moment, imagine some other point $S on the line
h between the two media. Is it possible that this point,
in violation of Snell’s Law, could lead to a shorter time
of flight from A to G? Since S and B are both on v, which
is perpendicular to h, B$S>BS for all $S ≠ S on h. Multi-
plying both sides by AG, we get

AG • B$S > AG • BS

Now we use the result from above. Replacing both
sides of the inequality with their equivalent formulas
from Ptolemy’s Theorem and factoring out the common
factor k, we find

which was what we had hoped to find. So if we choose
S in accordance with Snell’s Law, then no other point $S
on the interface h can form a path A$SG with a shorter
time of flight than ASG.

Thus we used Ptolemy’s Theorem to show that if we
assume Snell’s Law, we have also satisfied Fermat’s Prin-
ciple of Least Time for refraction.

Wrapping up
I’m surprised that I haven’t seen more on Ptolemy’s

Theorem in general—it seems like a very useful tool.
There are often lots of ways to prove these useful 
2D theorems, and after I worked out one to my satisfac-
tion, I hunted around on the Net for something better. I
found it! The nice little proof that I used in this column
follows the proof given at http://www.cut-the-knot.com/
proofs/ptolemy.html. The triple-play using Ptolemy’s
Theorem for refraction is based on the discussion by Dan
Pedoe in Geometry (Dover Publications, 1970).

There must be lots of ways to use these bits of circle-
and-line geometry to accelerate ray tracing, but I’m not
sure how. I’d be happy to hear from any readers who find
good applications for these geometrical tidbits.

After I had sent this column to CG&A for publication,
I mentioned it to Jim Blinn, who remarked that he had
created an animated version of Ptolemy’s Theoerem and
the angle-addition formulas as part of his work on Pro-
ject Mathematics!. He brought in the tape the next day,
and it covered these topics in Jim’s usual clear and enter-
taining style. I recommend you keep an eye open for
“Sines and Cosines, Part III” the next time Project Math-
ematics! appears on your local television. ■

Readers may contact Glassner at Microsoft Research, e-mail
glassner@microsoft.com. 
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