
People love patterns. We find recurring patterns
everywhere we look—in the structures of rocks, the

personalities of our friends, and the cycle of seasons in
the natural world around us. Theme and variation have
been a staple of creative invention since time immemo-
rial, spanning every form of creative endeavor. I suggest
that theme and variation represent a balance between
the extremes of regularity and sheer randomness.

Imagine a million grains of sand, placed one next to the
other in a straight line. Dullsville. Now imagine those
grains of sand scattered at random over a rocky surface.
That’s just as dull as before. But take those grains and stack
them up, let the wind play over them and shape them into
dunes, and you’ve got something beautiful and interesting.
Balancing between repetition and randomness can lead
to patterns that draw us in and keep our interest.

One of the most interesting ways of assembling small
units is along one of the lattices that make up crystals.
In this column I’ll live entirely in a 2D world, so our “crys-

tals” will be nothing but collections of polygons in the
plane. It’s well known that there are only three regular
ploygons that can tile the plane, as shown in Figure 1.
Here the verb “tile” means to cover the infinite plane
with a set of polygons so that no gaps or overlaps exist
among the polygons. Each polygon is called a “tile,” and
the composite pattern is called a “tiling.”

The tilings in Figure 1 may be theoretically interest-
ing, but because they’re so perfectly repetitive, they look
boring. Usually when you use one of these patterns to
cover a wall or floor, you decorate the tiles with colors
or shapes to make the whole thing a little more inter-
esting—again balancing the tiling’s regularity with the
variation in the tiles themselves. I did this in Figure 1 by
using two or three colors, but it didn’t help much. You
can generate more interest by allowing more than one
regular polygon in the game, resulting in the semi-reg-
ular tilings in Figure 2. This looks better, but regularity
still dominates the patterns.
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(a)

(b)

(c)

1 Three regular
tilings made of
many copies of
a single regular
polygon.

(a) (b) (c)

(d) (e)

(f) (g) (h)

2 Eleven semi-
regular tilings
made of one or
more regular
polygons. Every
vertex contains
the same kinds
of polygons
meeting in the
same order.
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We can control our tiling patterns by adopting match-
ing rules. These describe the permitted ways in which tiles
can be placed next to each other. Figure 3 shows a few
examples for assembling such a tiling from a single piece.
All the examples in this figure share a matching rule that
says tiles may only be placed so that the shared edge is of
the same length (that is, we can’t push a short edge up
against a long one). I also distinguished the two short
ends. In Figure 3a, I used a matching rule that says adja-
cent vertices must have the same color. Figure 3b enforces
the same result by modifying the common edge into a
mountain, so the tiles can only interlock in the desired
way. In Figure 3c the rule stipulates that colored bands
must be continuous across tile edges. Whether described
as vertex, edge, or face rules, we get the same pattern.

The patterns in Figures 1, 2, and 3 are periodic. Essen-
tially this means you find a group of tiles that you can
pick up and use as a rubber stamp. In other words, the
pattern is created by a single patch—called the funda-
mental cell—that repeats by translation to cover the
plane. The distance from one copy to the next is called
the period of the pattern. The translational part of the

definition is important. Figure 4a shows a periodic tiling
built from an isosceles triangle. Figure 4b shows a rota-
tionally symmetric pattern built from the same triangle,
but this one isn’t a periodic tiling, even though there’s
obviously a great deal of internal structure.

You can create tilings in surprising ways. Figure 5
shows a spiral tiling (which is also
nonperiodic), inspired by a con-
struction by Heinz Voderberg.
Although I used colors for decora-
tion, this pattern is made up of many
copies of only one tile. I found that
the easiest way to construct a cell for
this sort of tiling is to start with an
acute isoceles triangle, as shown in
Figure 6. The tiling works if the
acute angle goes into 360 degrees an
even number of times (I used 16 for
this figure, so the acute angle is
360/16 = 22.5 degrees). Let’s see
how this works. First, create a par-
allelogram from the triangle. Draw
a curve, and then rotate that curve
by 180 degrees to get it to match up
with the opposite corner. Now take
another copy of the triangle and
move its acute point to the lower
right corner of the parallelogram.
Make a copy of the curve and rotate
it around the lower right corner of
the parallelogram by the acute
angle. Now join the sides of the
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(a) (b) (c)

(a)

(b)

4 (a) Isosceles triangles can tile the plane periodically. 
(b) The same triangles can create a radial tiling, which
is not periodic.

5 A spiral tiling
made of a single
tile. The tiling
can be extend-
ed to cover the
entire plane.

3 Matching
rules. (a) Vertex
rules. Corre-
sponding colors
must overlap. 
(b) Edge rules.
The deformed
edges must link
together. 
(c) Face rules.
The decoration
on the faces
must be
continuous.
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curves, and voilá. The only tricky part is ensuring the
curves don’t intersect each other.

Figure 7 shows that a tile produced this way has two
important properties: it fits into itself both by a small
rotation equal to the acute angle of the original triangle
and by a full 180-degree rotation. Notice that the spiral
tiling in Figure 5 uses both properties: the two centers
use slightly rotated copies of the tile, and they join each
other with a half-rotated pair. From there it’s pretty
straightforward to add tiles and follow the spiral out-
wards. Notice, though, the pattern changes slightly each
time it wraps around 180 degrees.

Typically in any periodic tiling an infinite number of
fundamental cells exist, but often there’s only one small-
est such cell. For example, in Figure 1b the smallest fun-
damental cell is a single square, but you could use two
squares adjacent horizontally or vertically, or a 2-by-2
square of squares, and so on.

It’s easy to build nonperiodic tilings—simply don’t
create periodic patterns. Figure 8a shows a periodic
tiling of rectangles, and 8b shows the same rectangles in
a nonperiodic tiling. Theoretically we could extend the
pattern of Figure 8b, always mixing things up, so that
the final result is not periodic.

Can you create tiles that only tile the plane nonperi-
odically? The rectangles of Figure 8 don’t fill the bill,

since they can be coerced into a periodic pattern. If
there’s a set of one or more tiles that fit together to cre-
ate exclusively nonperiodic tilings, that set of tiles—and
the resulting pattern—is called aperiodic.

To my eye, aperiodic tilings made of a few distinct tiles
fit into that desirable class of patterns that balance reg-
ularity (because of the recurring instances of just a few
tile shapes) and randomness (because the pattern never
repeats). This column is the first of two that talk about
aperiodic tiles, how to make them, and what you might
do with them. The second column will focus on the
details of a specific family of tiles.

From 20,000 to 2
The question of whether any aperiodic sets of tiles

existed at all went unanswered until recently. In 1961
Hao Wang conjectured that there were no aperiodic tiles.
That is, any set of tiles that could tile the plane aperiod-
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

6 Creating a tile for Figure 5. (a) Start with an isosceles
triangle with an angle of 360/n degrees (here n = 16).
(b) Make a parallelogram. (c) Find the midpoint. 
(d) Draw a curve from the upper right corner to the
midpoint. (e) Rotate the curve 180 degrees. (f) Rotate
around the lower right corner by an angle equal to the
acute angle of the triangle. (g) Join the edges.

(a)

(b)

(c)

7 (a) The tile
made in Figure
6. (b) This tile
fits into itself by
rotation. (c) The
tile also fits into
itself by a verti-
cal reflection,
making a block
that can tile the
plane periodi-
cally.

(a) (b)

8 (a) The rec-
tangle can tile
the plane peri-
odically. (b) The
rectangle can
also tile nonpe-
riodically.

.



ically could also do so periodically. In 1964 Robert Berg-
er disproved this conjecture by inventing a set of more
than 20,000 dominoes that formed an aperiodic set.

Once aperiodic tilings were proven to exist, many peo-
ple set about to find smaller sets. Berger later found a
set of 104 tiles, and Donald Knuth found a set of 92 tiles.
Robert Ammann and Raphael Robinson independent-
ly found several different aperiodic sets of six tiles. Roger
Penrose holds the current record for the smallest set—
his sets contain only two tiles.

It’s interesting that the Ammann tiles and Robinson
tiles are both based on squares. This is great for com-
puter graphics, where we deal with square grids in
everything from sampling grids to texture patterns. So
I’ll kick things off with a look at the square-based Robin-
son tiles.

Robinson tiles
Figure 9 shows one set of Robinson’s tiles. Following

Grünbaum and Shephard, I used edge modifications to
show how the tiles lock together (see the Further Read-
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12 A decoration of Figure 11. The top of row tiles are
Fa and Fb, the second row Fc and Fd, and the third row
is Fe and Ff.

Fa Fb

Fc Fd

Fe Ff

9 The Robinson
tiles. Pieces can
only go togeth-
er so that the
tabs fit the slots
and the corners
are covered.
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10 Building a 3-by-3 Robinson block.

11 A 3-by-3
Robinson block
(shaded grey)
occupies each
corner of this 
7-by-7 pattern.
The glue tiles
make a large
plus sign.

Further Reading
The fundamental reference on tiling is Tiling and Patterns by

Grünbaum and Shephard, published by W.H. Freeman (1987, New
York). It’s a beautiful book, in addition to being the standard
reference work on the subject. Martin Gardner has written several
columns on tiling. Two are reproduced as chapters in his book
Penrose Tilings to Trapdoor Ciphers, also published by W.H. Freeman
(1989, New York). There are also some very interesting discussions
in Connections by Jay Kappraff, published by McGraw-Hill (1991,
New York).
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ing sidebar for more information). I also included labels
a through f on each tile, as well as the letter F to help
show the tile’s orientation.

Notice that tile Fa has a little tab in each corner, while
the other tiles don’t. This means that exactly one Fa tile
must appear at each vertex of the tiling. To assemble
the pattern, just put the pieces together so they fit. You
can rotate and flip these tiles as needed.

Starting with a single Fa tile, you can build the 3-by-
3 block in Figure 10. Except for some choices of orien-
tation, this is the only 3-by-3 block you can make with
these tiles.

To grow the pattern, you can run a new row of tiles
above it and to its right. Then rotate the 3-by-3 block
and affix copies of it to the right and top of the 4-by-4,
and then place a fourth rotated copy into the upper right
corner. Figure 11 shows the resulting 7-by-7 grid. You
can then run a new row of tiles above and to the right of
the 7-by-7 grid to grow a 15-by-15 block, and so on.

Part of the fun of working with aperiodic tilings is
decorating the tiles so that you get interesting-looking
visual patterns. You can approach these decorations in
two ways. One is to come up with designs that enforce
the matching rules, so you can dispense with the edge
modifications. In this case, you’d simply draw designs
on six square tiles, and then build the pattern to make
the designs continuous across tile edges. I found this
difficult to achieve with the Robinson tiles because I

couldn’t find a decoration that would force one and only
one copy of the Fa type tile at each vertex. The other
approach is to decorate the tiles that have edge modi-
fications and assemble the pattern according to the
edge rules. In this case the decoration does not force
the rules, but simply comes along for the ride. I found
this to be much easier for this set of tiles.

Figures 12 through 16 show three different decora-
tions for the Robinson tiles.  In all cases, the 7-by-7 block
is exactly the one in Figure 11, except I used the indi-
cated patterns on the tiles. It’s surprising how much vari-
ation you can get out of the completed pattern just by
changing the decoration a little bit.

Figure 17 shows an interesting variation on the basic
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13 A decoration of Figure 11.

14 A decora-
tion of Figure
11, and a varia-
tion of Figure
13.

15 Another decoration of Figure 11.

16 A different
decoration of
Figure 11.
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17 Introducing
a fault into a
Robinson tiling.
The fault lines
are in white.
The gray tiles
are sections of
the 7-by-7 block
in Figure 11.
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Robinson tiling pattern. Here I grayed out the pattern of
Figure 11 and placed to its left two “fault lines.” These
are strings of identical tiles that can knit together two
larger patterns. Notice that this also gives us the chance
to break the regular pattern of the tiles with corners—
each time we hop over one of these infinite lines, we can
displace the corner tiles by one unit. Figure 18 shows a
decorated example of this fault-ridden tiling using the
decoration of Figure 13.

This fault-tiling technique might be useful when tiling
a polygonal model. You can pave each polygon with
Robinson tiles, and then use the fault lines on the edges
to stitch individual polygons together.

Now that we know how to build patterns with these
tiles, we can reasonably ask if they’re actually aperiod-
ic. Remember that the decoration can be misleading,
since it doesn’t necessarily force the conditions of tiling.
A simple example of the problem is a decoration con-
sisting of a single circle in the center of each tile. Even if
the matching rules are followed exactly, the resulting
pattern would be nothing but a perfectly regular grid of
circles. So we need to look at the geometry of the tiles
rather than their decorations.

The insight into the periodicity of the pattern rests on
the construction of the basic 3-by-3 block (we’ll ignore
fault lines in this discussion). Rather that get bogged

down in the nitty-gritty, I’ll give the general idea here.
Basically the trick is based on extending the construc-
tion we saw in Figures 10 and 11. Schematically, it’s
shown in Figure 19. I used my favorite orientable sym-
bol, the letter F, to represent one of the 3-by-3 blocks.
Figure 19 shows the construction of the 7-by-7 grid from
four copies of the 3-by-3 grid plus the row and column of
glue tiles to hold them together. Clearly there’s no single
rectangular unit that will generate this whole pattern by
translation.

To see the big picture, consider it this way: The con-
struction builds up blocks of ever-greater size, built from
sub-blocks. None of the sub-blocks will work, since they
get rotated by the step that glues them together. So how-
ever large a block you choose as your unit tile to stamp
out the pattern, there’s going to be a rotated copy, or
some glue tiles, that get in the way. I hope I’ve suggest-
ed to your intuition that the Robinson tiles are aperiod-
ic, but I certainly haven’t proven anything. You can find
a complete proof in Grünbaum and Shephard.

The Robinson pattern isn’t periodic, but instead it’s
described by the technical term almost periodic. Again
ignoring fault lines, you’ll notice that each 3-by-3 block
repeats with period 8, and the 7-by-7 blocks repeat with
period 16. Basically each block that is 2n−1on a side
repeats with a period of 2n+1 tiles. So you can easily find
huge repeating patterns, even though the whole pattern
never repeats. Furthermore, this implies another prop-
erty called local isomorphism, which states that any
patch of tiles (without fault lines) will repeat infinitely
often in the pattern. These traits seem to be shared by
many aperiodic sets of tiles.

Ammann tiles
In 1977 Ammann developed a closely related set of

tiles. Figure 20 shows the tiles themselves: Once again
we have six tiles based on squares, with one tile marked
as having special corners that fill in the gaps left by the
other tiles. While the Robinson tiles had only two kinds
of notches (one symmetrical and one asymmetrical),
the Ammann tiles use three different matching condi-
tions on the edges.

Following Grünbaum and Shepherd, I again marked
these tiles with edge deformations that force them to
link up correctly. Here we have a symmetrical point, an
asymmetrical wedge, and a blunted asymmetrical
wedge. Each tab may only go into its correspondingly
shaped slot, though tiles may be rotated and flipped over
as needed.

We can build patterns from these blocks using the
same strategy as for the Robinson tiles. Figure 21 shows
a 3-by-3 block of Ammann tiles, and Figure 22 shows a
7-by-7 block. These tiles can also be decorated, as shown
in Figures 23 through 26.

Making tiles
There’s nothing like actually playing with tiles to get

a feeling of how they go together. While writing this arti-
cle I spent a lot of time assembling sets of real tiles. I
experimented with new kinds of decorations and real-
ly got a visceral feel for how they link up. I encourage
you to make your own tiles and play with them. You can
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18 A decora-
tion of Figure
17, using the
tiles of 
Figure 13.

(a) (b)

(c)

19 (a) A single 3-by-3 Robinson
block. (b) A 7-by-7 block is formed
by gluing together three 3-by-3
blocks. Notice that they rotate
when assembled. (c) A 15-by-15
block made by rotating and gluing
together 7-by-7 blocks.
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Fc Fd

Fe Ff

20 The six
Ammann tiles.
Note the three
edge modifica-
tions.
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21 Assembling
a 3-by-3
Ammann block.
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22 Assembling a 7-by-7 Ammann block from 3-by-3
blocks.

23 A decora-
tion of 
Figure 22.

24 Another
decoration of
Figure 22.

25 A different decoration of Figure 22.

26 A decora-
tion of 
Figure 22, and a
modification of
Figure 25.

.



find PostScript templates for all the tiles I talk about in
this article on my Web site.

I recommend that you print out the front-view page,
glue it to a sheet of cardboard, and then cut out the
pieces. Although gluing the tiles to cardboard may seem
unnecessary, consider that tiny little pieces of paper are
surprisingly aerodynamic—they have a tendency to
curl, and they’re much lighter than you might think. If
you forego the cardboard step, you’ll change your mind
the first time you sneeze on your carefully assembled
pattern of 85 tiles, or someone opens the door quickly
and the wind creates a tiny snowstorm of paper where
your tiling used to be.

Because these are two-sided tiles, you’ll want to dec-
orate the backs as well. I recommend cutting out the
back-view pieces from paper and then gluing them to
the pieces already cut out of cardboard—it’s much eas-
ier than trying to align the two paper sheets on opposite
sides of an opaque card before cutting.

Penrose tiles
I can’t conclude this column without at least men-

tioning the Penrose “kites and darts,” which are perhaps
the most famous aperiodic tiles. 

Figure 27 shows the basic geometry behind these tiles.
The starting shape is a rhombus with a length of φ, the
Golden Ratio, which is (1+√ 5)/2 ≈ 1.618. The rhombus
is cut by two lines, each of length 1, which meet on the
diagonal through the acute vertices. All the angles are a
multiple of the same basic angle θ = 36 degrees. The
matching rules are given by two arcs on each tile, here
drawn in red and green. The center of each arc is shown

along with its radius. Note that the arcs overlap in the
center. I have found it reads well if I make one thinner
than the other, and place the thinner one on top. This
decoration—and the names for the tiles—are due to
John Conway. The kite is the larger tile, and the dart is
the smaller, pointed one. An implicit matching rule is
the obvious one that only sides of equal length may sit
next to one another. Of course, the colored bands must
also join up continuously. Notice that this rule means
that you can’t reassemble the original rhomb from which
the tiles are built, since the bands don’t line up.

There is a lot to say about the Penrose tiles, and they
will occupy our attention in the next installment of this
column. Until then, you may want to play around with
them on your own. A few notes may help you save time
and sanity. First, these tiles are symmetrical, so you only
need to decorate one side. Second, you’ll need more
kites than darts—in fact, the ratio of kites to darts in a
complete tiling will be the Golden Ratio. Third, grow-
ing a Penrose tiling is tough. It’s surprisingly easy to cre-
ate a configuration where you just can’t add any more
tiles and still obey the matching rules. That’s okay. You
just need to back up and try again. If you can assemble
100 tiles by hand, you probably qualify as a master of
the form. We’ll see some construction recipes in my next
column. Figure 28 shows a piece of a Penrose tiling to
help you get started.

Next time we’ll look at Penrose tiles in much more
detail. In the meantime, you might want to look at the
many kinds of theme and variation surrounding us all
the time. The leaves on a tree, the waves crashing into
shore, and the songs of a bird are all similar to each
other but different, balanced on the axis between repet-
itive and random. There is much beauty to be found
there. ■

Readers may contact Glassner at Microsoft Research, e-
mail glassner@microsoft.com.
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27 (a) The
geometry of the
Penrose kites
and darts. The
Golden Ratio φ
is equal to
about 1.618.
The angle θ is
36 degrees. 
(b) Face decora-
tion for the
tiles. Tiles can
only be placed
so that the arcs
are continuous.

28 An example of a pattern created with Penrose kites
and darts.
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