
Theme and variation are part of nature. Birdwatch-
ers identify the species of a bird by its distinctive

markings, even though the specific colors and shapes
vary from one bird to the next. Every thunderclap
sounds roughly like thunder, but each one is different.
And of course snowflakes are beloved for the hexagonal
symmetry they all share, as well as the delicate patterns
unique to each one.

In the May/June 1998 issue of IEEE CG&A I discussed
the topic of aperiodic tiling for the plane. This technique
helps us create patterns with lots of theme and varia-
tion, like the leaves on a tree. I’ll continue discussing the
subject, so let’s first briefly summarize the main ideas
from last time.

The basic approach is to take a bunch of 2D shapes
and impose rules on how they can connect, like the
pieces of a jigsaw puzzle. Suppose that you have an infi-
nite supply of these shapes, or tiles, and you cover the
plane with them, out to infinity in all directions. You
might be able to find a region of the pattern that you
could pick up and use as a rubber stamp, and by stamp-
ing it out an infinite number of times (without rotating
or scaling it), fill the plane with the identical design that
you started with. So in essence you’ve reduced the orig-
inal set of pieces and their interlocking rules to just many

translated copies of a single, larger piece. If you can do
this, then the overall pattern—and the set of tiles used
to make it— are periodic.

If you can’t find such a single, big piece that replicates
the pattern by translation, the pattern is called nonpe-
riodic. Many tiles can create both periodic and nonperi-
odic patterns, depending on how they’re laid down.

If you happen to have a set of tiles that can only make
nonperiodic patterns, and you can prove that’s the case,
then you have an aperiodic set of tiles.

The quest for aperiodic tiles has gone on for several
decades. The first set discovered involved 26,000 tiles.
In the last issue I discussed two far smaller sets of ape-
riodic tiles, named after their creators. These Robinson
and Ammann tiles are based on squares, which make
them very convenient for computer graphics applica-
tions like texture mapping and sampling. Here I’ll look
at perhaps the most famous set of aperiodic tiles, dis-
covered by Roger Penrose. Actually, Penrose found two
distinct sets of aperiodic tiles, one called “kites and
darts” and the other called “rhombs.” Each set is made
of only two tiles. Let’s look at the kites and darts first.

Aperiodicity
Figure 1 shows Penrose’s kite and dart. The “kite” (the

larger tile) and the “dart” (the smaller, pointed one) may
be assembled only by placing them so that edges of sim-
ilar length are adjacent and the colored bands are con-
tinuous. (The names kite and dart, and this decoration
of the tiles, are due to John Conway.) Figure 2 shows an
example of a pattern created by these tiles.

As you can see, these tiles are indeed aperiodic. A full
proof would take more room than I have, but a gener-
al outline of the approach conveys most of the key ideas.
I’ll use a construction technique that’s based on substi-
tution rules. Like the rules of a formal grammar in com-
puter science, or an L system used in botanical
simulations, I’ll take each tile and replace it, in position,
with another set of tiles.

Let’s simplify the problem for a moment and look just
at 1D patterns.

Suppose that you had an infinite string, and you want-
ed to fill it up with an aperiodic pattern of white and
black beads. I’ll use two production rules to do the job.
First, every white bead will be replaced with one white
and two black beads in that order. I write this W→WBB,
as shown in Figure 3a. Similarly, we’ll replace each black
bead with the rule B→BWW, as in Figure 3b.
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Let’s start with a single white bead and then apply
these rules to start filling up the string. Figure 3c shows
the first few steps. Each time you apply the rules, you
take the original string of beads and apply all the rules
at once. So the first generation is simply WBB. Now the
new W goes to WBB, and each of the two Bs indepen-
dently go to BWW, giving us the new string WBBB-
WWBWW. Let’s run the process forever, so that we have
(theoretically) filled up the infinite string with beads.

If the pattern generated this way is periodic, then we
could find some chunk of beads—perhaps short, perhaps
enormously long—that repeats. We could then take one
of these chunks and glue it together into a super bead,
and then match the original pattern
by simply filling another string with
an infinite number of copies of this
single super bead. If we can’t find
such a super bead, the pattern is
either nonperiodic or aperiodic. You
might be able to convince yourself
that in this example we would never
be able to find such a super bead.

We follow a similar process in 2D
for Penrose tiles. The technique is
typically called deflation since the
new tiles are smaller (or deflated)
versions of their predecessors. Figure
4 shows the deflation rules for the
kite and the dart. Notice that two of
the newly created darts in the dart
rule fall off the side of the tile. The
matching rules come to the rescue
here—you can prove that each half-
tile is exactly completed by each of its
legal neighbors when that neighbor
tile is deflated. If you run the process
back the other way and reduce the
number of tiles in a tiling, it’s called
inflation, since each tile gets bigger.

Figure 5 shows a few deflation
steps applied to a small starting pat-
tern of Penrose tiles.

You may notice that some config-
urations of tiles seem to appear sev-
eral times in these tilings. This is
because you can only assemble tiles
around a vertex in a limited number
of ways. For example, take the ver-
tex at the tip of the dart and enu-
merate all the ways that other kites
and darts can be assembled around
that vertex while obeying the
matching rules. Then repeat the
process for the other vertices on the
dart, and then for the kite.

If you run through this process
and eliminate duplicates, you’ll find
that only seven different kinds of
clusters can be formed. These clus-
ters taken together are called the
atlas of the tiling. Figure 6 shows the
atlas for the Penrose kites and darts.
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into two kites
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Each of these clusters repeats an infinite number of
times throughout any Penrose tiling and can serve as a
good starting point for a tiling process.

You can derive analytic expressions for each point in
the atlas. For example, Figure 7 gives the locations of
the points in the Sun and Jack. You may find it fun to
derive the vertex locations for the other patterns—I give
them all on my Web site.

Growing a tiling
Now that you’ve seen something about Penrose

tilings, how do you generate them?
It’s very difficult to “grow” a covering of the plane

using kites and darts. Suppose that you start with just a
single tile, and place new ones that are always in accor-
dance with the matching rules. After a while, you’ll
probably find yourself in a state where you can’t add any
new tiles. What went wrong in this process?

Nothing actually went wrong, it just didn’t go right
enough. As an analogy, suppose you were writing a lim-
erick, and you got this far:

There once was a penguin named Bryce
Who lived in a house made of ice.
He painted it orange,

Now what? There’s nothing technically wrong with

this limerick (the third line is kind
of clunky, but let’s overlook that).
The major problem here is that you
just can’t rhyme with orange—
you’re stuck and it’s nobody’s fault.
You just have to back up a line or two
and try again.

It’s the same thing with building
Penrose tilings. You can follow all
the rules and find yourself unable to
add any more tiles. You need to take
some tiles away and try again, in a
trial-and-error process. Obviously if
we want to create and use Penrose
tilings regularly we need a more reli-
able approach for generating the
patterns.

We saw one approach above: start
with a single tile and deflate it over
and over, producing an ever denser
(or ever larger) tiling. Any finite
region can be covered with a finite
number of deflations, and the infi-

nite plane can be covered if we deflate forever.
This is fine mathematically. A problem occurs though

when we try to use this technique to explain the physical
phenomenon of quasicrystals.

Quasicrystals
In 1984, Dan Shechtman and his colleagues at the

National Institute of Standards melted together samples
of aluminum and manganese. They then quenched, or
quickly cooled, this molten metal by squirting it at a
rapidly spinning wheel, causing the temperature of the
metal to drop by about a million degrees kelvin per sec-
ond. When they examined the structure of the resulting
material using electron diffraction, the pattern looked
like one typical of crystalline structures, except that it
had a five-fold rotational symmetry.

This was very, very strange. All the laws of standard
crystallography disallow five-fold symmetry. Just try to
put five regular pentagons together at a single point—
you can’t do it unless you let them flop over on one
another. This alloy seemed to be a crystal by most mea-
sures, but it had this bizarre, and disallowed, internal
symmetry. The discoverers called this perplexing struc-
ture a quasicrystal. Since then, many other compounds
have been discovered that fit into the quasicrystal cate-
gory, including materials with five-, eight-, ten-, and
twelve-fold symmetries.

As described by Grünbaum and Shephard (see the
“Further Reading” sidebar), in 1984 Levine and
Steinhardt wrote one of the first papers that tried to
explain the internal structure of quasicrystals. They
showed that a 3D generalization of the Penrose tiles
matched the diffraction results of the real material, and
thus seemed to be a plausible model for the quasicrys-
tal’s internal structure.

This explanation worked mathematically, but in prac-
tice it posed three problems. First, the traditional way
to think of crystal formation is that it begins with lots of
copies of a single atomic configuration, but the Penrose
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A (0,0)
B (0, φ)
C (0, φ+ k)
D (cos (π/10), sin (π/10))
E φ(sin (2π/5), 1 − cos (2π/5))
F k(sin (2π/5), φ+ cos (2π/5))
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A (0,0)
B (0, k)
C (0, φ+k)
D φ(cos (3π/10), sin (3π/10))
E k(cos (π/10), sin (π/10))
F (φcos (π/10), k + φsin (π/10))
G (cos (π/10), φ+k −sin (π/10))
H φ(−cos (3π/10), sin (3π/10))
I k(−cos (π/10), sin (π/10))
J (−φcos (π/10), k + φsin (π/10))
K (−cos (π/10), φ+ k − sin (π/10))

8 The Gummelt
decagon.
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model requires two building blocks. Second, the Penrose
matching rules are straightforward on paper, but it’s
hard to imagine how simple atomic structures would
cooperate to pull them off. Third, as we’ve seen, it’s hard
to grow a Penrose tiling without getting into a situation
where you can’t grow any more; this would make it very
difficult for large crystals to form. So the Penrose tech-
niques we’ve seen so far don’t look like a good explana-
tion for quasicrystals.

A number of alternative theories have been put forth
to explain quasicrystal structures, but Penrose tiles have
always been in the running, despite their problems. The
challenge to those who believed in the Penrose expla-
nation was to simplify the matching rules and deal with
the puzzle of two basic units, rather than one. And clos-
er to the topics in this column, such rules would also
help us build new patterns of arbitrary size without get-
ting stuck.

A breakthrough in this quest came in 1996 in a paper
by Petra Gummelt (see the “Further Reading” sidebar).
She showed that a particular decagon, shown in Figure
8, could be used to grow a Penrose tiling by overlapping.
The overlap rules were only that overlap actually
occurred (that is, each decagon must overlap with at
least one other) and that colors had to match in the over-
lapped region. Figure 9 shows the five decagon overlap
rules. You can break down any Penrose tiling into a col-
lection of these overlapping decagons.

This work showed that a single structure, albeit a com-
plex one, could be used to create the aperiodic Penrose
tilings in the plane. This addressed the problem of
requiring multiple building blocks. But the matching
rules were still a problem. How do you imagine random
atomic clusters, floating around in a
soup, obeying complicated overlap
assembly rules?

On a technical note, observe that
the Gummelt decagons do not strict-
ly tile the plane because they over-
lap; a true tiling creates no overlaps
and leaves no holes. Gummelt sug-
gested that this be called a covering
rather than a tiling.

In their 1997 paper Jeong and
Steinhardt discussed Gummelt’s
decagon and simplified her original
proof that it generates a valid
Penrose tiling (see the “Further
Reading” sidebar). They then pre-
sent a second technique, also based
on overlapping clusters of Penrose
rhombs. Figure 10 shows one of
these clusters. Jeong and Steinhardt
proved through a complicated argument that if many
copies of this cluster overlap (as in Figure 11) so that the
complete tiling has the highest possible density, the
result is a Penrose tiling. They point out that the maxi-
mal possible overlap corresponds to the minimum pos-
sible energy.

This approach addresses the two chief difficulties
with using the Penrose model to explain 2D quasicrys-
tal formation and structure: we’re now down to a sin-

gle structure, and we have eliminated the matching
rules in favor of a more physically plausible juggling
about for minimal energy. Whether this cluster argu-
ment can be extended to 3D—and whether or not it
accurately predicts new quasicrystals yet to be found—
only time will tell.

Materials scientists and engineers are excited by qua-
sicrystals and developments such as these that seek to
explain them. Such understanding can lead to new
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(b) The overlap with a large
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10 The Jeong
and Steinhardt
cluster.

11 Five ways
that the cluster
of Figure 10 can
overlap with
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.



materials, which can exhibit new properties that have
commercial and technical value.

Penrose rhombs
In addition to the kites and darts, Penrose also came

up with another pair of aperiodic tiles, shown in Figure
12. These are usually called the Penrose rhombs, and the
two tiles are simply named thin and thick. The figure
also provides the matching rules—as before, the color
bands must be continuous. The edge-length conditions
are easier here, since all sides have the same length.
Figure 13 shows the atlas for the rhombs. There’s no set
of shorthand names for these that I know of, so I’ve sug-
gested a set of names for these shapes in the caption.

You can deflate rhombs directly, just like kites and
darts. Figure 14 gives the recipe. It’s interesting to note
that you can convert a kites-and-darts tiling into a rhomb
tiling, and vice-versa. Figure 15 shows the basic idea.
Figure 16 shows the rhomb equivalent of Figures 2 and
5. There’s clearly a lot of common ground between the
two kinds of tiles and their decorations. Figure 16c
shows what they look like when both versions are drawn
together.

Implementation
How would you write a program

to create Penrose tilings? In this sec-
tion I’ll concentrate on kites and
darts. You can use Figure 15 to adapt
these ideas to the rhombs.

The simplest method is to apply
deflation rules to a starting tile or set
of tiles. The easiest way to deflate a
pattern is to first turn it into trian-
gles. Each kite and dart can be split
into two congruent triangles along
the dashed line in Figure 1. Each of
the dart triangles contains an obtuse
angle (of 4θ = 144 degrees), while
the kite triangles don’t, so they’re
typically referred to as obtuse and
acute triangles, respectively.

The deflation process is now sim-
ply a matter of running through the
list of triangles and replacing each
one with the appropriate set of new
triangles as shown in Figure 17. The

new triangles can be reassembled into kites and darts if
desired, or they can immediately go through the sub-
stitution process again.

If you don’t draw the black lines around each kite and
dart, it doesn’t matter how you store the triangles. But
if you do want to draw the composite tiles, make sure
that when you draw each triangle, you don’t draw a line
down the edge that’s internal to the kite or dart to which
the triangle belongs. You can see the effect of these sup-
pressed lines around the perimeter of Figure 5. You can
use some conventional scheme to identify that edge,
such as always making it the first one in the list.

The data structure for this process can be very sim-
ple. Just maintain a list of triangles, each containing its
three points and a flag indicating whether it’s obtuse or
acute. Then run through the list, building up a new list.
When you’re done, go through the list again, drawing
the appropriate decoration on each triangle.

To convert to rhombs, use Figure 14 to build a new list
of thin and thick rhomb triangles from the obtuse and
acute kite and dart triangles.

Uses
Now that you know how to make Penrose tilings, what

good are they to us in graphics? The most obvious
answer is to use them to create endless aperiodic tex-
ture on surfaces. Simply draw some interesting face dec-
oration that obeys the matching rules, pick an initial tile
and orientation, and then deflate until you cover the sur-
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face with tiles. You can use this to create a nice big tex-
ture on a flat surface, such as the side of a building or a
floor.

If you’re careful, you can carry this construction
across polygons so you don’t get a seam where two poly-
gons adjoin. But how could you apply this technique to
a sphere—or simpler yet, a cube? Of course, formally
you can’t do this at all. If you followed the pattern from
the front face, say, around to the right face, then in back,
then to the left, and then back again to the front face,
you’ve completed a loop: the pattern is periodic in the
distance covered by the lengths of the four faces. And
since Penrose tilings are by definition aperiodic, you
can’t use them to cover a cube, a sphere, or even tricki-
er surfaces like donuts or Möbius strips.

There may be modifications of the tilings that will
match up around the surfaces of these objects. I haven’t
been able to find any such instances, but that doesn’t
mean they don’t exist. Other uses of these tilings
include generating nonuniform sampling patterns for
stochastic sampling, such as that used in distribution
ray tracing.

Another use of Penrose tilings is to create image maps
that control models. For example, suppose you want to
lay out a city that grew up rather than being planned
out in advance. You could decorate your tiles with
building bases, and create a tiling of the plane. Then
use the result as a blueprint upon which you erect office
towers, homes, apartment buildings, and so on. They
will have a visible large-order structure, but they won’t
be on a regular, boring grid. You could use such blue-
prints to specify geometry, materials, the density of
flowing lava, or whatever else you’d like to create with
some large-scale but nonrepeating
structure.

Decoration
Inventing new face decorations

for the Penrose tiles is fun, but each
of the tiles must be symmetrical
across the edges marked with a
dashed line in Figure 1. I haven’t seen
this restriction discussed anywhere,
but it’s not too hard to find the rea-
son. Consider the Sun pattern in
Figure 6. Let’s assume that the long
edges are different; we’ll call them
types 1 and 2. We’ll see that assum-
ing we have these two distinct edges
leads to a contradiction.

The proof is easy. Pick any radial
spoke of the Sun and label it 1. Then
label its clockwise neighbor 2, then
the next clockwise neighbor 1 again,
and so on, around the Sun. You’ll
find that you have the sequence
12121, which means that the last 1 is
up against the first 1, which violates
our assumption that the kite had
two distinct edges. You can prove
the same thing for the long sides of
the dart using the Star pattern.
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The restriction on the short sides
follows the same process. Surround
a Sun with darts and assume that
the short sides are different. By sim-
ply alternating the two side labels
you can see that we again reach a
contradiction.

Of course, there’s no reason not to
create tile patterns that are asym-
metric on the inside, as long as the
edges match up. Or for fun, you
could have a variety of different
internal designs (as long as the
edges are all the same) and mix
them up. You can choose the deco-
ration of each tile randomly, or
according to a procedural scheme.
If you’re going for a complicated tex-
ture, this is an easy way to make the
resulting pattern more complicated.
Remember that introducing com-
plexity in the picture moves you
away from pattern and towards ran-
domness, so you’ll want to approach
this process with caution.

To create allowable and attractive
decorations, I found it useful to
make a chart of the legal and illegal
configurations. Figure 18 shows all
of the pairings of kite and dart
edges, split into legal and illegal
pairs. I still like to cook up designs
using paper and colored pencils. I
found it useful to make a little clus-
ter, as in Figure 19, that shows all the
legal configurations in one unit so
that I can get a general idea of how
the decorations look.

Figure 20 shows a pair of tiles
that I made from a photo of a
starfish—note that these are sym-
metrical across their central axis. In
Figure 21 I lovingly hand-assembled
these into a Penrose tiling. To show
the value of asymmetrical designs,
Figure 22 shows the tiles after I
redrew them to make them asym-
metrical, and Figure 23 shows the
resulting pattern.

Of course, if you want a really
random look, you can generate
some kind of random pattern on the
tiles using fractal noise, diffusion-
reaction patterns, or any other pat-
tern generator you like, and then
enforce the boundary conditions
programmatically.

Wang tiles
Although it’s a bit off the subject

of aperiodicity, there’s another
important tiling topic that I can’t
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20 A symmetri-
cal kite and dart
decoration.

21 A Penrose
tiling made
from the tiles of
Figure 20.

18 Dart and kite configurations.
Illegal pairs are surrounded with
red, legal pairs in green. The bold
segment at the edge of each row
and column shows the segment
being matched. The lower left
corner of the grid is symmetrical to
the upper right, so I left it empty.
The four gray squares in the upper
right indicate illegal pairs because
the edges are not the same lengths.

19 A single cluster that tests all of
the legal kite-dart edge combina-
tions.
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resist mentioning briefly. The sub-
ject is the close connection between
tiling and computing. Recall that a
Turing machine is a conceptual
machine made up of an infinite
piece of tape, a read-write head, a
state marker, and a collection of
transition rules. When running, the
machine looks at the current value
on the tape (typically either a 0 or
1), and then looks up its current
state. The machine then rummages
through its rules until it finds one
that matches these inputs. This rule
tells the machine what number to
write back onto the tape, what state
to consider itself to be in next, and
whether the read-write head should
be moved one step left, right, or not
at all.

Although you’d never want to
write a big program on a Turing
machine, it’s not too hard to write lit-
tle programs. The remarkable thing
is that Turing machines are power-
ful enough, in theory, to execute any
computable algorithm. They might
be slow and clunky, but anything
that can be done by the biggest com-
puter imaginable can also be done by
the humble Turing machine.

In 1975, Wang showed that
Turing machines could be simulat-
ed by tilings (see Grünbaum and
Shephard for details). Rather than
go through the theory, I’ll show an
example of the idea. I’ve chosen a
simple operation inspired by some-
thing that we do all the time in com-
puter graphics: z-buffering. An
essential z-buffer step is finding the
minimum of two numbers. To make
things simpler, I’ll pose the problem
this way: find the smaller of two pos-
itive integers, each larger than 2.
Figure 24 shows a set of tiles to
accomplish this goal and the com-
putation. For convenience, I also
numbered the columns of the tiling.
The origin of the number line is fixed
at 0 by the tile marked α. Two other
tiles, marked β, mark the two num-
bers we want to compare; in this
example they’re placed at 5 and 11.
Their minimum appears to the left
of the origin at a tile marked δ, located at –5. This tiling
puts δ at –min(β1,β2). How does this work?

As always, tiles can only abut if their edges match.
Here I marked the edges with numbers, so the numbers
have to be the same across each edge. Edges that are
unmarked are implicitly numbered -1, so most of the infi-
nite plane is filled with tiles that are -1 on all four edges.

For convenience, the plane is only half-infinite; the upper
boundary is marked with edges 0. The tiles in gray are
assumed to match along the marked edges and have
labels of –1 on the others. I’ve shown the indices of the
number line above the grid to make it easier to see what’s
happening. α is located at 0, and our two input βs are at
5 and 11.
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22 An asym-
metrical modifi-
cation of the
tiles of 
Figure 18.

23 A Penrose
tiling made
from the tiles of
Figure 20.
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Figure 25 shows another representation of the iden-
tical tiling. I’ll refer to this figure from here on, since I
believe the color coding and interlocking shapes make
the discussion clearer. The little bumps at the top of the
tiling capture the top row; imagine that they fit up
against an infinite row of half-circle concavities. Rather
than add gray to every colored tile and make things
more complicated, I adopted the convention that any
straight edge is implicitly colored gray.

Let’s start with the β tiles. Each one connects to the
upper border with a half-circle and generates a down-
ward-heading column of red tiles. These columns will
continue downward forever unless something inter-
feres. Of course, I’ve set things up to create interference!

Now look at the α tile, marked in green. It sends down
a tile that forks off into a downward-heading red column
and a blue diagonal that heads down and to the right.
The blue diagonal continues until it reaches the nearer
of the red columns created by the β tiles. A couple of mul-
ticolored “glue” tiles mediate the collision. At this point
of intersection, two new rows are created, marked in yel-

low. One row moves to the right,
where it eventually reaches the out-
ermost red column and stops it
(using a multicolored glue tile). The
other row moves to the left, until it
encounters the red column sent
down from the origin. That collision,
again handled by a multicolored tile,
signals a new blue diagonal up and
to the left. Eventually this gets to
within one square of the top border,
where the pink tiles take over. The δ
tile then connects the diagonal to the
top of the grid.

Because the two blue diagonals
are the same length, and both start
directly underneath the origin, the

distance from δ to α is the same as the distance from α
to the nearer β, and we’re finished. Note that although
I spoke of columns “moving” in one direction or anoth-
er, that was just to help analyze how the pattern came
together. This computation is represented by a single,
static tiling.

Simply by creating the right set of 14 tiles, we’ve com-
puted the minimum of two positive integers. Wang
showed that this process could be carried out in gener-
al, so that any Turing-machine program could be con-
verted into a set of tiles and connection rules. Now I’m
not suggesting that you run out and sell your worksta-
tion for some tiles and a big checkerboard, but it’s worth
knowing that theoretically any program and its inputs,
computation, and results can be represented by one of
these tiling patterns—though admittedly anything
beyond a toy problem would be enormous.

You might see a similarity in spirit between this form
of computation and cellular automata. Notice though
that these tiles are static—the act of simply creating a
stable and consistent tiling pattern is the computation,
unlike automata, which themselves are little processors
that run local programs.

I really like the idea of using a computational Wang
tiling to decorate a kitchen or bathroom floor. It would
be quite an inside joke, of course, but it would provide
an occasional reminder of the fact that the humble geo-
metrical mosaic can handle any computational task,
from predicting weather and understanding speech to
rendering 3D images.

An aperiodic tile
I’ll end this issue’s column with an open question: Is

there a single aperiodic tile? That is, is there a single
shape that can cover the plane with no gaps or overlaps,
and creates a pattern that cannot be also created by
translation of a subset of the pattern? Nobody knows.
The trend from 26,000 to 2 seems to suggest that the
step to 1 might be possible.

I’ve fantasized that this would be a terrific one-page
doctoral thesis. Simply titled “An Aperiodic Tile,” it would
contain a one-line abstract, a picture of the tile, a picture
of the inflation rule(s), and a single reference to
Grünbaum and Shephard. I hope somebody writes it! ■
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25 A color-and-
shape version of
Figure 24.

Further Reading
The fundamental reference on tiling of all sorts is Tiling and

Patterns by Grünbaum and Shephard (W.H. Freeman, New York,
1987). A very good book on the mathematics of quasicrystals and
aperiodic tilings is Quasicrystals and Geometry by Marjorie Senechal
(Cambridge University Press, Cambridge, England, 1995). A
popular account of Penrose tiles appears in Martin Gardner’s book
Penrose Tilings to Trapdoor Ciphers (W.H. Freeman, New York,
1989). Gardner discusses many fascinating properties of these
patterns that I haven’t had the space to cover here. In the text, I
referred to “Penrose Tilings as Coverings of Congruent Decagons”
by P. Gummelt (Geometriae Dedicata, Vol. 62, 1996, pp.1-17) and
“Constructing Penrose-like Tilings from a Single Proto-tile and the
Implications for Quasicrystals” by Hyeong-Chai Jeong and Paul J.
Steinhardt, (Physical Review B, Vol. 55, No. 6, 1997, pp. 3520-
3532). There are some great online references. A good place to
start is the Quasitiler page at the Geometry Center, located at
http://www.geom.umn.edu/apps/quasitiler/. A quasicrystal
bibliography is available at http://gene.wins.uva.nl/~kerres/
quasicrystals.html.
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