
Polygons are everywhere. They’re in our cereal, on
our kitchen floors, and in the constellations in the

skies. One place I didn’t expect to see polygons is in the
Fourier transform, but I found them there as well.

The Fourier transform is an indispensable tool in sig-
nal processing. In computer graphics, it helps us under-
stand and cure problems as diverse as jaggies on the
edge of polygons, blocky looking textures, and animat-
ed objects that appear to jump erratically as they move
across the screen.

My friend and colleague Alvy Ray Smith recently wrote
a memo that demonstrated a surprising interpretation of
the Fourier transform. He showed how in some circum-
stances the Fourier transform looks like nothing more
than operations on regular polygons. This column is
about that fascinating insight. I’ll start off with a warm-
up in using complex numbers to do geometry and then
move on to the Fourier series, building up to a discussion
of the new interpretation. If you’re unfamiliar with com-
plex numbers, I invite you to check out the sidebar “A
Quick Refresher on Complex Numbers.” I’ll introduce the
Fourier series in the main body of the text. If it’s new to
you, don’t worry—you’ll see it’s actually pretty simple by
the time we get there. And the payoff is worth the journey.

Napoleon’s Theorem
Let’s begin with a lovely little theorem in elementary

geometry:

Napoleon’s Theorem: Given any triangle ∆ABC,
erect equilateral triangles on each side (all facing
inward or all facing outward), and connect the
centroids of each of these triangles. The resulting
triangle will be equilateral.

You may recall that the centroid of a triangle is the
arithmetic average of the three vertices. Figure 1 shows
an example of this theorem in action. I’ll call the origi-
nal three points V = (v0, v1, v2), the three points at the
tips of the new triangles T, and the three points that
make up the Napoleon triangle N.

You can prove this theorem in lots of ways. If you like
working things out for yourself you may want to take a
shot at it before reading on. I’ve seen proofs that are
strictly geometric, strictly algebraic, and various com-
binations of the two.

The approach I’ll use here is based on representing
each vertex of the triangle as a complex number. We’ll
carry out the construction with the complex interpre-
tation and then prove that it’s right.

Figure 2 shows the edge formed by v1 and v2. Although
I chose this edge at random, they all work the same way.
Figure 2 shows the geometry resulting from building an
equilateral triangle on these points and then finding the
centroid. First find point t0 at the apex of the triangle,
and drop the median down from t0 to vm12, the midpoint
of v1 and v2. Next draw the median from v1 to the mid-
point of v2 and t0. The intersection of these two medians
denotes the centroid, marked by the complex point n0.
It doesn’t matter which two medians we use in this con-
struction, because all three meet at n0.

We can save time by observing that we don’t have to
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1 A demonstration of Napoleon’s
Theorem. The original triangle, V,
shown in blue, consists of points
(v0, v1, v2). On each edge, we build
an equilateral triangle facing out-
wards. The new points, T, at the tip
of these triangles are (t0, t1, t2). The
centroids of the three new triangles
(n0, n1, n2), are joined with heavy
black lines to form the Napoleon
triangle, N, which is equilateral. n0
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the intersection
of two medians.
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A Quick Refresher on Complex Numbers
Complex numbers arose naturally as people thought

about how to find some value of x that would satisfy 
x2 + 1 = 0. It’s a logical step in the sequence of trying to
solve equations.

To begin with, consider the equation x + 3 = 5. Only one
value of x will work (that is, only one solution exists): x = 2.
This x is an integer. Now consider 3x = 5. The solution, 
x = 5/3, is a real number (that is, not an integer) and a
rational number, which is specified as the ratio of two
integers. Getting more ambitious, suppose we want to
solve x2 = 3. Now the only solution is x =√ 3 , which is also
real, but irrational. Mathematically, irrational doesn’t mean
emotionally unstable, but simply nonrational (that is, √ 3
cannot be expressed as the ratio of two integers). Some
common irrational numbers are √ 2, √ 3, e, and π.

Consider the equation x2 + 1 = 0. If we just grind out a
solution, we find x =√ −1. Whatever this may mean, it’s been
given the label i, so i=√ −1  (engineers often use the symbol j
for this; the right interpretation is usually clear from
context). The question of just what √ −1 ”means” has been
debated for a very long time. Regardless of the
philosophical interpretation, it’s clearly a very convenient
computational entity. We can combine a real and an
imaginary number into a single new number z as z = a + bi,
where a and b are real numbers (rational or irrational), and
i=√ −1. We say z is a complex number. Note that either part
of z may be zero, so the complex numbers include all the
pure reals and imaginaries.

What are the powers of i? Since anything raised to the 0
power is defined as 1, i0 = 1 and anything to the first power
is 1, so i1 = i. By definition, i2 = −1. Building on these starting
points, we find i3 = −i, i4 = 1, i5 = i, i6 = −1, and so on. The
pattern repeats indefinitely.

Algebra with complex numbers is straightforward. To add,
just add components. If w = a + bi and z = c + di, then w + z
= (a + c) + (b + d)i. To multiply, treat the complex numbers
as factors: (a + bi)(c + di) = ac + bci + adi + bdi2 = (ac − bd) +
(bc + ad)i, using i2 = −1. It’s natural to try to get some kind of
visual take on complex numbers. Since real numbers can be
plotted along an axis, we can try to put them together with
imaginary numbers along another axis. The plus sign in the
complex number a + bi seems to invite the idea of replacing
it with a comma, giving the 2D point (a, b).

In 1797 Caspar Wessel did just this. He placed the reals on
the x-axis of a normal 2D coordinate system and the purely
imaginary numbers on the y-axis, creating what was later
called an Argand diagram. The complex number z = a + bi is
represented by the point (a, b). A purely real number r sits on
the x-axis and may be thought of as r + 0i. A purely imaginary
number such as 0 + ri lies on the y-axis. When a pair of axes is
used this way, x identified with the reals and y with the
imaginaries, it’s often referred to as the complex plane.

Interpreting complex numbers as points on the plane
gives us some more ways to understand them. We can speak
of the magnitude of a complex number z = a + bi, which is
simply its distance from the origin: |z|=√ (a2 +  b2) and the
phase, which is the angle it makes with the x-axis: 
θ = tan−1(b/a).

A remarkable property of complex numbers is revealed
when we compare the series expansions for sine and cosine
with the series of expansion of powers of e, Euler’s constant.
Many books derive these expansions. They work out to be:

If we plug in i for x, we get the very useful identity

ei = cos 1 + i sin 1

Combining this with de Moivre’s theorem, which tell us
(cos θ + i sin θ) = (cos 1 + i sin 1)θ, we find the important
identity,

eiθ = cos θ + i sin θ

which relates imaginary powers of e with complex
numbers or simply points on the complex plane. Notice
that the magnitude of these points is 1, and the phase is
simply θ. So if we know a complex number has magnitude
r and phase θ, we may write it as r(cos θ + i sin θ) or much
more compactly as reiθ.

This expression, r(cos θ + i sin θ), is called a complex
sinusoid. If we plot its coordinates on the complex plane as
θ moves from 0 to 2π, we get one complete circle of radius
r. As θ grows beyond 2π, the sinusoid simply wraps around
the circle again and again. Suppose we have two of these:
s1 = eiθ and s3 = ei3θ. Clearly s3 spins around the unit circle
three times faster than s1. Just as Euclidean space builds on
the idea that the x-, y-, and z-axes are orthogonal (or at
right angles) to one another, so does the Fourier transform
makes use of the fact that these two functions are also
orthogonal (though in a more abstract way).

Writing complex numbers as points in the complex plane
gives us another way to see multiplication. If z1 = reiθ and z2

= seiϕ, then z1z2 = (rs)ei(θ+ϕ). In words, this tells us that when
two complex numbers are multiplied, we multiply their
magnitudes and add their phases. If the magnitude of a
complex number z is 1, then multiplying by z is equivalent
to a rotation counterclockwise by the phase of z.

To wrap up with a bang, let’s return to eiθ = cos θ + i sin θ
and set θ = π. Then we arrive at one of the most remarkable
expressions in all of mathematics,

eiπ − 1 = 0

which expresses a deep harmony among five fundamental
constants representing number theory (0), arithmetic (1),
algebra (i), trigonometry (π), and calculus (e).
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actually make point t0. Figure 3 shows the geometry of
the equilateral triangle. Triangle ∆v1n0vm12 is a 30-60-
90 triangle. If the distance |v1v2| = 1, then |v1vm12| =
1/2, and |v1n0|=1/√ 3 . So we can find n0 simply by tak-
ing the vector v2 − v1, rotating it 30 degrees counter-
clockwise, scaling it by a factor of 1/√ 3 , and adding it
back to point v1.

This is exactly the sort of geometric thing that complex
numbers handle very well. If we multiply the vector 
v2 − v1 by a complex number d=(1/√ 3  )eiπ/6, then we’re
set. In symbols, n0 = v1 + d(v2 − v1). This n0 is one of the
three points ni making up the Napoleon triangle N.

To prove that Napoleon’s Theorem is correct, we need
to show that N is an equilateral triangle. To do that, I’ll
change our construction process a little (this will keep
the algebra from getting too messy). We’ll construct the
Napoleon triangle in two steps. Starting with the orig-
inal triangle V, create the three points T at the vertices
of the temporary construction triangles and find the
centroids of these triangles, which will give us the
points N.

To build the set of points T, take each edge in turn as
we did before, but rotate it by 60 degrees counterclock-
wise. To do this, just multiply the edge vectors by a com-
plex number g = eiπ/3 representing a counterclockwise
rotation of 60 degrees and add back the starting point.
For example, t0 = v1 + g(v2 − v1). The Napoleon points
N are the average of the two points on each edge and
the newly constructed point on T. For example, 
n0 = (t0 + v1 + v2)/3.

Now we’re ready for the punch line. We’ll prove that
triangle N is equilateral by taking one of the edges,
rotating it 120 degrees clockwise, and showing that we
land exactly on top of the adjacent edge. That is, we
take N, rotate the whole thing by 120 degrees, and get

the very same triangle. Only equilateral triangles sat-
isfy this property.

For specificity, let’s follow one edge in particular—
say n0n2. Looking at Figure 1, we expect that rotating
this will land us on n2n1. We already have g lying around,
which rotates by 60 degrees, so if we apply it twice, we’ll
get 120 degrees. Algebraically, we want to show that
g2(n0 − n2) = n2 − n1, or equivalently,

g2(n0 − n2) − (n2 − n1) = 0

Plugging in the values derived earlier for triangles N
(for example, n0 = (t0 + v1 + v2)/3) and T (for exam-
ple, t0 = v1 + g(v2 − v1)) and simplifying, this becomes

(g2 − g + 1)[(g − 1)v0 − (1+2g)v1 + (2 + g)v2]/3 = 0

A little algebra shows that g2 − g + 1 = 0, so the for-
mula holds true. We’ve found that rotating this edge by
120 degrees gives us the previous edge. There was noth-
ing special about our choice of edge, so all edges share
this property, ergo N is an equilateral triangle.
Napoleon’s Theorem is indeed true!

Figure 4 shows the development of the three trian-
gles when they point inward rather than outward and
the equilateral triangle they form.

Interestingly, because of symmetry, we can tile the
plane with Napoleon constructions. Figure 5 shows a
tiling of the plane using the triangles of Figure 1. In
Figure 6 I marked the equilateral triangles formed by
the inward-pointing construction and the irregular tiling
they create.

Lighting design by accident
The Fourier transform is an important tool for under-

standing signals of all sorts and of great value in com-
puter graphics. I’ll give a very bare-bones description of
the discrete-time Fourier series, which will be just
enough for the big payoff in the next section. If you’re
already familiar with the DTFS, you might want to just
skim the next two sections.

Let’s start off with an analogy. Suppose you’re the
director of a new off-off-Broadway play. You don’t have
much money, so you only bought nine identical lights
for your theater. Since you can’t afford gels, all the lights
project the same off-yellow color. The show opens next

week, but you’re still unhappy with
the lighting for the important mid-
night-picnic scene.

Theatrical lights contain a built-
in slot in front of the lens that holds
a thin, etched metal plate, called a
gobo or cookie. When the light
shines through the holes in the
gobo, a pattern of light and dark
projects on the stage. For example,
one gobo might project a shadow
pattern like that of moonlight
through a tree’s leaves. You bought
nine different gobos, and they’ve
already been inserted in front of the
nine lights. The lights have been
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4 Building the Napoleon triangle
with inward-pointing triangles. The
original triangle (in blue), the same
as in Figure 1. (a) The first triangle.
(b) The second triangle. (c) The
third triangle. (d) The Napoleon
triangle (in thick black lines)
formed from the centroids of the
three triangles.
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aimed properly, but you’re unhappy with the way they
mix. Looking at the set, you know that some lights need
to be brighter and others dimmer. The lighting board,
which contains a series of sliders—one per lamp—
controls this. Push the slider up, and the correspond-
ing lamp gets brighter.

It’s late at night, and everyone else has gone home.
You’re sitting alone in the seats staring at the set, trying
to imagine which lights need to be brighter and which
dimmer, when you hear a terrible crash behind you.
Jerking around in your seat, you see that a great load of
junk has fallen off a shelf and collapsed onto the light-
ing board, screwing up all the settings. But it’s your lucky
day, because a glance at the stage reveals that the light-
ing is now perfect! You only have two problems. One,
you can’t see the sliders on the board because the junk
is obscuring them. Two, you realize you can’t get the
junk off without knocking all the sliders into new posi-
tions. Somehow you need to determine the positions of
the sliders just from the lights themselves.

Perhaps you can eyeball their intensities. You climb
up on the stage and look up at the lights, but that’s hope-
less—they’re all much too bright to look at directly. You
look at the pattern of light falling on the stage itself, but
the complicated shadows cast by the gobos makes it
impossible to visually distinguish how much each light
contributes. You call your friend Jackie who advises you
to do something strange: go through the props, get out
nine napkins, and arrange them in a big three-by-three
grid that covers the stage. She then advises you to use
your handy light meter to measure and record how
much light falls on each napkin. With those measure-
ments safely written down, she tells you that you can
now clean off the lighting board without fear, since she
can recover the slider settings from knowledge of the

gobo patterns and the nine readings you took.
How could she possibly untangle the contributions of

each of the nine lights given only nine readings through-
out the stage? This is exactly the sort of job that the
Fourier transform does. We change the language a bit,
but the idea remains the same.

The new bits of language are the complex sinusoid
(see the sidebar on “A Quick Refresher on Complex
Numbers”) and the idea of a signal. For our discussion
here, a signal may be considered nothing more than an
indexed list of numbers. Whether they’re real, imagi-
nary, or complex makes no difference. We’ll write the
signal itself in lowercase bold letters, like x, and the ele-
ments of the signal indexed either with brackets or sub-
scripts: x[n] and xn both refer to the nth element of the
signal x. Signals can arise in an infinite number of ways.
Two of the most common are by sampling a function (for
example, x[n] = n + 2 for n = [0, 5]) or else direct
assignment (for example, x is the temperature at noon
over eight successive days in May).

So in our story, the nine light readings at the napkins
create a nine-element signal. We’re interested in match-
ing the lighting with the sum of nine scaled lights. In a
Fourier problem, we want to match a signal with the
sum of nine scaled complex sinusoids. In the story, the
goal was to find the slider value for each light. In a
Fourier transform, we want to find the scaling coeffi-
cient for each sinusoid.

The Fourier transform
In the one-dimensional Fourier transform, we take a

set of complex sinusoids, scale them, and add them
together to create a signal. If we already have a signal to
start with, then we use the Fourier transform to analyze
the signal and find the contribution of each sinusoid.
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6 The same tiling as in Figure 5,
but using the Napoleon triangle
built from inward-pointing trian-
gles. (a) The tiling created by the
Napoleon triangles (gray). 
(b) A colored version of the com-
plete tiling.

5 Tiling with Napoleon triangles.
(a) A tiling of the plane using the
original triangle (yellow) and the
three outward-pointing equilateral
triangles built upon it (red, green,
blue). (b) The tiling created by the
Napoleon triangles (gray).
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The inverse Fourier transform turns the process around
and synthesizes the signal by adding up scaled sinu-
soids. Figure 7 shows an example. It’s a big subject that
I’ll cover in only the briefest way—the “Further Reading”
sidebar points to some books where you can learn more.

Actually, a few different types of Fourier transform
exist. In this column, I’m exclusively concerned with the
DTFS. This takes as input a vector of complex samples of
a signal x. The result is a, the vector of coefficients that
describe the amplitude of complex sine waves of increas-
ing frequency. By convention, the elements of x are writ-
ten x[n], while the elements of a are written ak. We’ll
assume that we have N values of the signal x, and thus
also N coefficients at our disposal in a to match x. The
sine waves that match x are called the basis functions for
the decomposition of x.

A discussion of why complex sinusoids are good basis
functions would take us very far afield. I recommend
consulting one of the books in the “Further Reading”
sidebar if this question interests you.

Now that we’ve set the stage, let’s look at the specifics
of the transform. The sidebar on complex numbers
shows that a convenient way to write the complex sine
wave cos(θ) + i sin(θ) is eiθ. Our list of sine waves begins
with θ = 0. That is, the first complex sine wave is 
ei0 = 1. This is often called the DC (direct current) value.
It’s not really much of a sine wave, since it’s just the con-
stant 1. We can scale this wave to add a global offset to
the entire synthesized signal. The remaining waves used
by the Fourier process are the complex sinusoids that
have a frequency given by integer multiples of 2π/N.
These are ei(2π/N), ei2(2π/N), ei3(2π/N), and so on, up to 
ei(N−1)(N−1)(2π/N). The left column of Figure 7 shows the
first few of these.

The complex coefficients an tell us how strongly to
weight each of these waves to reconstruct the original

signal x. The complete synthesis equation for element
x[n] is

If this is new to you, don’t let all the superscripts and
subscripts throw you. Remember, all we’re doing is
adding up values of complex sinusoids to come up with
a single number. In words, to find the value for element
x[n], we add up N different sine waves. For each wave,
indexed by k that runs from 0 to N − 1, we take the basic
frequency (2π/N)n, multiply it by k, call this θ, evaluate
cos(θ) + i sin(θ), and scale the resulting complex num-
ber by ak. The factor of 1/√ N at the start is a necessary
normalization factor, which I won’t get into here.

The matching analysis equation turns the process
around and computes the ak from the signal x:

The only difference here (besides the swap of the a’s
and x’s and their indices k and n) is that there’s a minus
sign in the exponent. In words, to find the kth coeffi-
cient, we step through the sine waves (this time indexed
by n), take the basic frequency −k(2π/N), multiply it by
n, call this θ and evaluate cos(θ) + i sin(θ), and scale
this by x[n].

These two equations are a matched pair. If you start
with a signal x, analyze it to compute the vector a, and
synthesize a new signal x′ from that, you’ll get back what
you started with.

The bottom line is that the DTFS lets us take a list of
complex values x and convert them into a list of com-
plex coefficients a, and vice versa. Whether we want to
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7 The left column shows four sine waves. From the top, they plot sin(x), sin(2x), sin(3x), and sin(4x). The middle
column shows those waves after scaling by a real constant. On the right, I show the result of adding them together
to build a composite real signal. The Fourier transform uses complex sinusoids, so in addition to these sine waves, it
includes corresponding imaginary cosine waves.
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think of our signal as a set of values or as a set of coeffi-
cients of complex sine waves—or both at once—makes
no difference because they both describe exactly the
same information. Sometimes the set of values x[n] is
referred to as the signal space representation of the sig-
nal, and the set of coefficients ak are referred to as the fre-
quency space representation.

The DTFS (and the other variants of the Fourier trans-
form) prove useful because many operations are more
convenient or meaningful on one space or the other.
These two equations tell us how to easily go back and
forth between the two equivalent representations. The
important thing to remember is that both the values of
x and the coefficients a may be complex.

Fourier polygons
What the heck has all this Fourier stuff got to do with

Napoleon’s Theorem? The connection, of course, is their
common use of complex numbers. The point of visiting
Napoleon’s Theorem was to get comfortable using com-
plex numbers to represent points in the plane and mul-
tiplying by eiθ to represent a rotation by θ. The interesting
thing is that this viewpoint leads to a really nice inter-
pretation of the Fourier transform.

The DTFS discussed above is a one-dimensional kind of
beast. The signal values are indexed by a single number
and the coefficients are as well. Fourier transforms have
been applied to two, three, and higher numbers of dimen-
sions, and those are all useful. Usually in graphics we
think of a 2D Fourier transform as operating on an image.
We start with a collection of real numbers representing
pixel intensities, transform those into complex amplitudes
(this time of 2D complex sinusoids), and back again.

Let’s reconsider the input to the DTFS. The DTFS actu-
ally operates in complex space, and it’s completely
appropriate to use complex numbers for the signal x[n].

If we think this way, then we can consider the com-

plex sinusoids that form the heart of the transform as
complex numbers themselves. In the discussion of
Napoleon’s Theorem, we saw that multiplication by a
complex number seiθ causes a scaling by s and a coun-
terclockwise rotation by θ. This is called a spiral dilation,
and these are precisely the terms in the heart of the
Fourier transform.

Let’s write out the synthesis equation for the DTFS in
matrix form. The reconstructed signal vector x is given
by the product of a matrix F and the coefficient vector a
or in symbols, x = Fa. If we write γ= i2π/N, the tableau
form of the synthesis equation may be written as in
Figure 8.

Recall that e0 = 1, so the top row and left column are
all 1’s. Notice that this matrix is symmetrical—the rows
and columns can be transposed.

Now we’re almost ready for the trick.
Every element of F is simply the complex number cosθ

+ i sinθ for some value of θ. But each entry in the matrix
also represents a point on the complex plane. And when
multiplied with another complex number, it causes a
spiral dilation. In fact, because the magnitude of each
element of F is 1, they’re simply rotations.

And not just any rotations, but rotations of integer
multiples of the angle 2π/N. Now, what do you get if you
place points around the circumference of a circle, each
separated by an angle 2π/N? It’s just a regular polygon
with N sides. If N = 3, you get an equilateral triangle, if
N = 4 you get a square, and so on.
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8 A tableau
representation
of the synthesis
equation for the
discrete-time
Fourier series.
Here, γ= i2π/N.

Further Reading
My main inspiration for this column was Alvy Ray Smith’s

“Eigenpolygon Decomposition of Polygons” (Technical
Memo 19, Microsoft Research, Redmond, Wash., 1998),
where I first saw the idea of basis polygons. Alvy describes
the basis polygons as the eigenvectors of a matrix of
rotations operating on polygons in the complex plane. He
also provides a nice operator-based way of writing
Napoleon’s Theorem. Alvy credits some of his insights to
Over and Over Again by Keng-Che Chang and Thomas W.
Sederberg (Mathematical Association of America,
Washington, DC, 1997).

Some online math sites feature discussions of Napoleon’s
Theorem. I adapted the proof given by Alexander
Bogomolny for this column (http://cut-the-
knot.com/proofs/napoleon_complex.html), and Scott
Brodie gives a couple of other proofs (http://mirrors.
org.sg./mathi/proofs/napoleon.html). You can also
experiment with some interactive gadgets for playing with
the construction (http://www.saltire.com/applets/
advanced_geometry/napoleon_executable/napoleon.htm).

Some historical information on Napoleon’s Theorem can
be found in a mail thread on the Internet. I particularly
recommend the postings by Michael Deakin and Julio
Gonzalez Cabillon (to read the mail thread, go to
http://forum.swarthmore.edu/discussions/
epi-search/all.html and search for “napoleon”).

The development of complex numbers in the sidebar is
based on the discussion in Introduction to Geometry (2nd
Edition) by H.S.M. Coxeter (Wiley & Sons, New York, 1969).

You can learn about Fourier transforms from lots of
places. If you don’t mind learning from a textbook, Digital
Signal Processing by Alan V. Oppenheim, Alan S. Willsky,
and Ian T. Young (Prentice Hall, Upper Saddle River, N.J.,
1983) is a good book to teach yourself from. I also like
Signals and Linear Systems (2nd Edition) by Robert A. Gabel
and Richard A. Roberts (J. Wiley, New York, 1980). For a
treatment of signal processing and Fourier transforms
specifically targeted to the computer graphics community,
I humbly offer my own book, Principles of Digital Image
Synthesis (Morgan-Kaufmann, San Francisco, 1995).

.



Now we’re ready for the big climax. The insight we’ve
been building up to can be expressed in two different,
but equivalent, ways:

1. The rows and columns of the Fourier matrix are reg-
ular polygons in the complex plane.

2. Any N-sided polygon may be described as a weight-
ed sum of N regular polygons.

Let’s see why these statements are true and why
they’re so cool.

We’ll start by looking at the columns of F and plot them
in the complex plane as a sequence of points. For speci-
ficity, I’ll select N = 8, so γ= i2π/8 = iπ/4, and multipli-
cation by eγis a counterclockwise rotation of 45 degrees. 

The left-most column of F is simply the complex point
(1, 0) repeated eight times. It will be helpful to think of

this as a really degenerate octagon, where all the ver-
tices are coincident. Figure 9a shows the results.

The second column is the sequence of points [e0, eiπ/4,
ei2π/4, ei3π/4, ei4π/4, ei5π/4, ei6π/4, ei7π/4]. If we plot these, as
in Figure 9b, we get a regular octagon inscribed in a cir-
cle of radius 1. The octagon starts at (1, 0) and proceeds
counterclockwise.

The third column doubles the angles, giving us the
points [e0, ei2π/4, ei4π/4, ei6π/4, ei8π/4, ei10π/4, ei12π/4, ei14π/4].
If we remember that einπ = 1 for any integer n, these
points are [e0, eiπ/2, eiπ, ei3π/2, ei2π, eiπ/2, eiπ, ei3π/2]. In
words, the eight points form a square (or diamond) that
wraps around itself twice, as in Figure 9c. This is still an
octagon, but a very strange one. One way of thinking
about this is that we’re going around the octagon, but
skipping one point each time we move.

Following the pattern, the fourth column yields a star
octagon, as in Figure 9d. You can think of this as our
original octagon, except we skip over two points on each
move. It’s still an octagon, but it’s a pretty twisted one.

The fifth column simplifies to the two points (1, 0)
and (−1, 0) in alternation. Figure 9e plots this sequence
of points. Though it looks like a line, this is again a dis-
torted octagon.

The remaining polygons are repeats of their prede-
cessors, taken in the opposite order and traversed in the
opposite direction. The sixth column yields Figure 9f,
where we have a star octagon that looks like Figure 9d,
but is visited clockwise rather than counterclockwise.
The remaining two columns repeat the diamond and
regular octagon, except these two are also traversed
clockwise.

Another way of writing the matrix tableau then is as
in Figure 10, where each column is indicated as a series
of points around the indicated polygon.

Recall that I spoke of the Fourier transform as decom-
posing an input signal into a sum of basis functions, which
were complex sinusoids. In the new interpretation, we
can say that the Fourier transform decomposes a polygon
into a sum of basis polygons, themselves simply regular
polygons (though some are degenerate). Then the vec-
tor a represents the version of the input polygon in basis
space. Converting a back to x means simply weighting
the basis polygons and adding them back together again.

To see this in action, consider how to compute x[2].
We form the dot product of the column vector a and row
3 of the matrix. This row represents the third vertex of
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9 The eight basis polygons, plotted in the unit circle.
The points are numbered in the order they are visited.
(a) The degenerate octagon, where all 8 points land on
(1, 0). (b) The counterclockwise octagon. (c) The octa-
gon consists of points that form two overlapping dia-
monds. (d) An 8-pointed star. (e) The octagon consists
of alternating visits to (1, 0) and (−1, 0). (f) Figure 9d
traversed clockwise. (g) Figure 9c traversed clockwise.
(h) Figure 9a traversed clockwise.



each basis polygon. Thus we find the
position of each vertex in the output
polygon as a weighted sum of the
corresponding vertices in the basis
polygons. 

To see how symmetrical this all is,
Figure 11 shows the analysis form
that computes a from x. Notice that
the only change in the matrix is that
now the basis polygons are tra-
versed in the opposite order.

Figure 12 shows an example of
applying this interpretation. Here I
made a little cat’s head out of eight
points. The pieces of the figure
show what happens when I break
the figure into its basis polygons,
crank up the diamond component, and resynthesize
the figure. In Figure 12b, I scaled up the diamond by
1.5 and later figures show higher amplitudes. You can
clearly see the cat’s head being pulled towards the dou-
ble-wrapped diamond as that component of the shape
dominates.

Note that Figure 12 isn’t a “morph.” In that technique,
you have two line drawings representing the start and
end states, and you move the points in some way from
their start locations to the end locations. Rather, I have
only one shape throughout—the cat’s head. All that’s
happening is that the diamond-shaped component of
the Fourier transform is being scaled up with respect to

the other components so that when I reconstruct the
shape, the diamond predominates. In other words, the
cat’s head had a diamond shape already in it (as do most
octagons). All I’ve done here is emphasize its diamond
nature over its other constituent shapes. 

I think that this is a wonderful way to look at poly-
gons. The fact that it’s the Fourier representation that
makes this all work out is natural and, like all the best
insights, obvious in retrospect. ■

Readers may contact Glassner at Microsoft Research,
e-mail glassner@microsoft.com.
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(b)(a) (c)

(f)(e)(d)

12 The transformation of a cat. If
you use your imagination, the
octagon in (a) is something like a
cat’s head. Each figure shows the
result of amplifying the counter-
clockwise “diamond” component of
the Fourier transform (as shown in
Figure 9c) and leaving other com-
ponents unchanged. (a) The origi-
nal shape. (b) Amplification of the
diamond component by 1.5, (c) by
2, (d) by 3, (e) by 8, and (f) by 100.
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