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Abstract

Accurate display of synthetic images requires careful attention to color. Physical phenomena such as
reflection and transmission are wavelength-dependent, so these effects should be modelled for the entire
visible light spectrum. It can be shown that simply modelling this spectrum with an RGB triplet leads to
color aliasing [HALL84]. One apparent hurdle in supporting the spectral model in rendering systems is that
many users have built up libraries of colors based on RGB triplets which they are loath to abandon. In this
note we present a simple method that takes as input an RGB triplet viewed on a given monitor, and
computes a corresponding spectrum for use in the renderer. The method can also find a spectrum for colors
described as HSV triplets, and xy pairs or xyz triplets in CIE XYZ color space.

1.0 Problem Context and Statement

The problem addressed in this note involves support for a rendering system that does color computation
on a finely (and perhaps stochastically) sampled color spectrum. Pictures produced by such a system
consist of a color spectrum for each pixe! *1 the screen viewport. For display on a particular color monitor
each pixel's spectrum must be converted into an RGB triple. To find the RGB triple for a given spectrum,
the system first calculates which point in XYZ color space is associated with that spectrum. That XYZ
point is then processed by the XYZ-to-RGB transformation for the appropriate monitor, which accounts for
the particular phosphors in that tube.

We wish to allow users of such a spectrum-based system to specify colors as RGB triples seen on a
particular monitor. More precisely, we wish to accept from the user an RGB triple viewed on a particular
monitor, and from the RGB values and the monitor description find a spectrum that will generate, after the
above conversion process from spectrum to XYZ color space to the monitor gamut, the same RGB triplet.

Such a capability allows a designer to choose RGB colors interactively on a certain monitor, and then
assign those colors to objects in a synthetic scene. Such colors might describe reflected or emitted spectra.
If a color is used as a diffuse reflection spectrum, then a (purely diffuse) object illuminated by unit white
light in a rendered scene will be perceived as having the same color as the original RGB triplet, no matter
which display device is used.

Our technique assumes that all involved devices are gamma-corrected , so that the relationship between
RGB signal and perceived brightness can be considered linear [CATMULL79].

2.0 Notation for XYZ <> RGB Transformations

Consider the standard conversion of a color in CIE XYZ space to a particular monitor's RGB space.
This is accomplished via a linear transformation M;, built for monitor i. It is useful to write the XYZ
color as a position vector X = [x y z], and the RGB color as a position vector R = [r g b] (where 0 < x,
y,z,1,8,b <1). Then M is a 3-by-3 matrix built from the chromaticities of the phosphors in monitor i
[HALLSG6], which converts a color in XYZ space to the corresponding RGB of that (gamma-corrected)
monitor. We thus have the relation

(1) R = XM,
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21 Notatiom for XYZ > Spectrum Transformations

To coavert a spectrum A into XYZ space we integrate with the three CIE standard matching functions
X, ¥,and Z to produce the values x, y, and z: . ’ :

780 : 780 : 780
x= [AQ) xM A y= JAQ) M A z= [AQ) ) dh

380 380 : 380

Consider-the infinite number of spectra A that give the same XYZ co-ordinates. We're free to choose
any such spectrum, since one of Grassman's laws [GRASSMAN1854] is that “stimuli of the same color
(that is, matched by the same amounts of the same three light sources) produce identical effects in mixtures
regardless of their spectral composition” (quoted from [MEYER]). Since the transformation from XYZ to
RGB is linear, all spectra which give us the desired RGB also give the same XYZ. So we may pick any
spectrum we like, as long as it gives the proper XYZ to get the desired RGB.

3.0 Solution

We define T to be a 3-dimensional space of line spectra (a line spectrum is 0 everywhere but at some
finite number of wavelengths), as illustrated in Figure 1. Each axis of T corresponds to a line spectrum
that is O everywhere except for unit amplitude at one fixed wavelength; i.e. the axes u, v, and w of T
correspond to spectra Ty, Ty, Ty, that are 0 everywhere except Ty(Ay)=1, T,(A,)=1, and Ty(A,,)=1. Each
point S in T corresponds to a spectrum S that is a linear combination of these spectra, so it is 0 everywhere
except at these three wavelengths, where the amplitude of the spectrum is equal to the associated co-ordinate
of S. Thus a point S = [a b c] corresponds to a spectrum S that is zero everywhere, except S(A,))=a,
S(A)=b, and S(A,;)=c. .
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Fc;r such a spectrum S we can directly write the integrals in Section 2.1:

- x=S(y) X(Ay) + SAy) X(hy) + Shoy) XOhy)
©y = S(y) JAy) + SA) I + SRy T)
2= S0 2hy) + SO) 2hy) + SO) 2Ry

. 'We may write the above equations as a product of the vector S and a matrix C, where C holds the nine
entries corresponding to the amplitudes of X, ¥, and Z at the three wavelengths Ay, Ay, and A, We thus
have our second relation:

?) X=S8SC
) ) 20)
where S = [S(Ay) SAy) SAWT, C=| %) F) Z(hv)
%) § () 20hw)

We now have everything we need to find the spectrum S corresponding to to an RGB vector R.
Equation 1 relates points R in RGB color space to points X in XYZ color space, and Equation 2 relates
those points X to points S in the spectrum space. The relation between R and § is just the composite
transformation R = XM; = (SC)M; = S(CM;). Solving for S gives our solution:

S = R(CM))!

To get from a given XYZ triple to a spectrum is even easier; just solve (2) for S = Xc-l,

4.0 Discussion

Matrix inversion is a costly process. If we compute J = (CMi)‘1 the first time we convert a color to a
spectrum and save J, then successive color transformations will only require a matrix multiply. We can
eliminate even this one run-time inversion under some circumstances.

Note that matrix C is a function of the CIE standard observer curves, which don't change. Below we
discuss how to build a good C matrix, but once built it will remain fixed. On the other hand, M; is
dependent on display device i. If we allow the user to specify the device characteristics at run time, then
we'll have to build the appropriate M; on the fly, compose it with C, and compute J. Alternatively, we can
keep a file of all the different displays in a given lab, from which the user selects one display device.
Associated with each display in the file is the transformation matrix J, which we read in directly.

If we have 4-by-4 matrix routines available (e.g. if another part of the program does spatial
transformations), then we can use those routines without modification if we must build J at run time. Just
fill out each matrix and vector with identity homogeneous co-ordinates and implement the equations from
section 3.

A useful feature is to provide spectrum generation for HSV color descriptions [SMITH78]; simply read
in an HSV color, convert it to RGB, and run the RGB triplet through J to get the corresponding spectrum.

It may be interesting to consider the physical significance of J. A point in RGB space represents a
linear sum of the three RGB basis vectors Red, Blue, and Green. Similarly, points in the spectrum space
(which we associate with line spectra above) are linear sums of the spectrum space bases, each of which is a
one-component line spectrum. So the weights on the Red, Green, and Blue axes, which together make an
RGB color, are transformed into weights for each of the three line spectra, which together make the
associated 3-component line spectrum.
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The spectra of the axes of the spectrum space T are non-zero only at three particular wavelengths: 4y,
Ay» and A,. We must exercise a bit of caution when picking these wavelengths, since they give rise to our
C matrix, which must be invertible. Thus, the three wavelengths must be different (to avoid linear
dependency), and all three matching functions must be non-zero at all three' wavelengths (to avoid a zero
determinant). To get the best numerical stability when inverting the matrix choose the wavelengths that
give the largest (but not too similar) values for the matrix. I associate Ay, Ay, and Ay, with the wavelength
of the largest entry in my sampled versions of the X, ¥, and Z matching functions respectively; it fulfills
the matrix criteria and seems to be numerically stable. I present my matrix C and the wavelengths from
which it was computed in the Appendix. ' :

Observe that the technique in this note does not select the spectrum corresponding to a given RGB
triple; an infinite number of such spectra exist. In fact, the spectrum built from just a single application of
this method is probably one of the worst for the job, since it is zero everywhere but at three specific
wavelengths. In a situation where this spectrum describes a transparent filter, most of the light energy will
be blocked; a more spread-out spectrum would probably pass more energy.

One way to get a fuller spectrum is to build several spectra by the above process. Each spectrum is
built using a different set of wavelengths as the basis for the spectrum space T (as defined in Section 3.0).
For each set n, (Ay, Ay, Ay)n defines a different space Ty, and thus requires its own transformation matrix
Jn. Once we have computed each of these spectra, we average them together (we can use any weights on
the spectra when averaging; equal weighting works fine). Again using Grassman's law we know that the
composite, averaged spectrum will produce the same effect as any of its components.
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APPENDIX

My matrix C encoding the spectrum-to-XYZ transformation is built from samples of the matching
functions at A, = 590nm, A, = 560nm, and Ay, = 440nm. The corresponding entries of the X, ¥, and z
matching funcuons then give the C below. Here are also my default M; and the resulting J = (CM; L

1.0263 0.7570 0.0011 1.7411 -1.3247 0.0019 |
C =]0.5945 0.9950 0.0039 |}, C1=1-1.0389 1.7955 -0.0034
v 0.3483 0.0230 1.7471 | 03334 0.2404 0.5721 |
2.1336 -1.1279 0.0103 - | 0.6623 -0.1861 0.0258 |
M; = | -0.6882 2.0517 -0.1568|, J= (CM;)! = | -0.2916 0.8236 0.0565
-0.3421 0.0463 0.9689 -0.0963 0.1431 0.5970 |

Examples: xy—S and RGB-S

Let us take as an example an input in xy chromaticity space (. 1578 .2528). We compute the z value
as 1-x-y=.5894 so X = [0.1578 0.2528 0.5894). Then S = XC-! = [-0.1844 0.3866 0.3366]. So the
spectrum S giving this X is zero everywhere except Sy _s9o= -0.1844, S; _560= 0.3866, Sy _440= 0.3366
(note the negative intensity!).

As a second example let us take the RGB input vector R = [.0191, .9967, .7749]. Then the
composite transformation gives us S = R(CMi)'1 = RJ = [-0.3526 0.9283 0.5156).

Computing the XYZ-to-RGB Transformation Matrix

For completeness, we give a summary of how to derive the XYZ-to-RGB transformation matrix M; for
a given monitor. A more complete discussion may be found in [HALLS6].

From the monitor specifications we get the xy chromaticities for the CRT white spot (wx, wy) and red,
green, and blue phosphors (rx, ry), (gx, gy), and (bx, by). We augment each xy pair with the corresponding
z = 1-x-y. From the phosphor mplets we build the matrix K below. From the white spot triplet we build
the XYZ color vector W, which is the color corresponding to the chromaticities (wx, wy) with the
luminance Y set to 1.0. We will find it useful in the derivation to define the RGB white vector F = [11 1],
and the matrix N; = (Mi)‘l. We also define the vector V and matrix G, which are related by V = FG.

Ix Iy Iz Gx 0 0
[wx wz] K=|gx 8 8| V=[GxGyGz, G=|0 Gy O
bx by bz 0 0 G,

First, we observe N; = GK (the RGB-to-XYZ matrix is a differentially scaled version of the phosphor
matrix). Since N; takw the XYZ white W to the RGB whne F, we write W = FN;. Substituting for N;,
W = F(GK). Muluplymg by K-! on both sides gives WK-! = FG. Recalling V = FG we can rewrite this
last equation as V = WK1 and thereby compute V. From V build the corresponding matrix G. Then
compute N; = GK, and from that compute M; = (Ni)". In summary, the steps are:

1. Build W and K from the monitor white spot and color phosphors.
2. Compute V = WK1

3. From the vector V build the matrix G

4. Compute N; = GK

5. Compute Ml = (N,)'

The M; given at the start of this Appendix is the result of the above procedure for a monitor with

phosphors (rx, ry) = (.615, .337), (gx, gy) = (.231, .664), (bx, by) = (.147, .063), and white spot.
(wx, wy) = (.310, .316).
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