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Abstract
Pop-up cards are fun to make and receive. Traditionally they have
been designed by a process of trial and error, requiring the creator
to repeatedly draw, cut, glue, and test each piece until it is correctly
positioned and moves as desired. The process can quickly become
complicated and ultimately frustrating as the card increases in com-
plexity. To address this problem, we have developed stable analytic
solutions for the locations of important points as the card folds and
unfolds. We give the essential geometry for the three important
pop-up techniques of single-slit, asymmetric single-slit, and V-fold
mechanisms. We have implemented our solutions in a small design
program.
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1 Introduction
Pop-up cards are enjoyable 3D constructions that change shape
when a page or card is opened. They are fun to design, make, and
share. Generally the construction techniques are easy, and children
armed with blunt scissors and non-toxic glue can make their own.
Adults enjoy pop-up cards too; Siggraph used a pop-up in its pro-
motional materials for the 1995 conference.
Unfortunately, designing a pop-up and then executing that

design is much harder. The problem is that finding the right shapes
for all the pieces is usually a process of trial and error: the designer
cuts out pieces, folds and glues them, waits, and then tests the re-
sult. If it doesn’t look quite right, the next step is to cut new pieces
with slightly different shapes, fold, glue, wait, and try out the result
again. That’s a lot of cutting, gluing, and waiting, which can add up
to boredom and frustration. A typical card-in-progress is shown in
Figure 1a; this is the tenth version of that design (the final version
was the fourteenth). An interactive system could relieve this
tedium and provide the opportunity for immediate feedback and
responsive design, potentially improving the interactive process.
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One approach to building such a system would be to use con-
straint systems [6]. But constraint systems are complex, and can
be slow and numerically delicate. The geometry of pop-up cards

is structured enough to let us find analytic solutions which are fast,
easy to code, and robust.
There are many possible constructions that move as a card is

opened, and they could all be called pop-up designs. In this pa-
per we will restrict ourselves to mechanisms which are based on
moving planes driven by an opening pair of pages. These are fun-
damental pop-up techniques, and the ones that cause the most phys-
ical labor through trial and error. The other popular mechanisms [2]
are relatively straightforward to lay out and execute.

2 Prior Work
Most prior work on paper techniques has focused on origami [1]
and paper-folding [3] [5]. Origami methods generally do not ad-
dress the motion of pieces as other pieces move, which is central
to pop-ups. The only technical publication we have found on pop-
up cards is [7]. This work found a geometric invariant among the
planes involved in a pop-up mechanism called a V-fold design, but
it was not clear how to use that result for interactive design. Pop-
ular books on construction techniques abound; two of the best are
[2] and [4]. There are also many books available with templates
and patterns for cards of different types.

3 Single-Slit Mechanisms
The simplest pop-up is called the single slit design; it’s the
triangular shape at the base of the red mailbox flap in Figure
1b. There are many possible variations on this design, but
for our purposes they all boil down to the same thing: as the
card closes, two hinged planes rise toward the reader. Fig-
ure 2 shows the essential geometry behind all single-slit designs.
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Figure 2 also establishes the conventions we will use in this pa-
per. The two outside planes are called and ; together they
form the card. Their line of intersection is the crease along which
the card is folded; we call that line the support crease and label it
. The angle between the planes is . Planes and form

the pop-up itself, and move as chages. Our convention is that
is held constant while is moved; thus rotates around
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while is fixed. This also means that points , , and are
fixed, and point simply rotates around by , the negative
complement of card angle . We write the position of points and
for a given fold angle as and . Thus and are

the positions of when the card is open and closed, respectively.
We want a general expression for arbitrary . Note that in Figure
2a, and mark the same point. We call edge the central
pop-up crease, and edges and the side pop-up creases.
Figure 2 shows the simplest form of the single-slit geometry,

where the cut is perpendicular to . If this cut is at an angle
to the fold line, then point is simply a point on the pop-up edge
rather than its terminus.
Note that the single-slit mechanism is at its most extreme posi-

tion when the card angle is at , so we call this a “right-
angle” mechanism. When the card is fully open, the pop-up returns
to the plane of the card. We now turn to finding , the location of
as the card folds.

4 Finding
From Figure 2 and our conventions we see that points , , and
are fixed, and is simply rotated around by . Given
these points, and the original location of , where is ?
Observe that the lengths , , and do not

change as the card folds; these distances are always the same as
when . Thus is simultaneously on the surface of three
spheres with these radii and centers , , and respectively.
Three mutually intersecting spheres meet in two common

points. The value of those points when plugged into the implicit
equation for each sphere is zero. Imagine a plane through the
centers of the three spheres, as in Figure 3. Now we have
the simpler 2D problem of finding the point which has the
same value with respect to the three circle equations. The line
perpendicular to this plane through (dashed in Figure 3)
contains the intersections of the spheres, one of which is .

Figure�3

To find , we first find the locus of all points that have the same
value with respect to two circles. The implicit function for a circle
is . We want to

find all points on two circles and , so , or
. For a generic point we find

Thus all points which have the same value with respect to
two circles lie on a line, which is called the radical axis.
Now suppose that we have three mutually intersecting circles

of different radii, labeled , , and , as in Figure 4b. Circles
and meet in two points, and . Since both points

have the value zero with respect to both and , these two
points determine the radical axis . Similarly, and

determine the radical axis . Since we’ve said that the
three circles are mutually intersecting, lines and meet

at some point . By construction we have
and . Thus , which means
that also lies on the radical axis formed by points

and . Our conclusion is that if three circles mutually
intersect, their three radical axes intersect at the unique point .
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We find by creating a plane for each radical axis. The plane
for axis contains that line and is perpendicular to the page.
Figure 4a shows the basic geometry for finding this plane: we are
given circle centers , their radii , and ,
and wish to find point . From we see .
To find we use the law of cosines with triangle to
find . So

. Our plane passes through with a normal parallel to
. Intersecting any two of these planes gives us the dashed

line in Figure 3.

Given the equation of this line, we can intersect it with any one
of the spheres to find the two common points. We select for the
point that is on the same side of plane as point .

If the circles do not mutually intersect, the radical axes are par-
allel, and there is no point of intersection [9]. Our circles are never
disjoint; the extreme cases are when the card is fully open or closed
and the three circles are mutually tangent.

Interactive adjustment of in the single-slit is limited to the
plane that includes and is perpendicular to line . Other
choices for the designer are to move , or and together. The
limits on the motion of are given by the size of the card (which
constrains the other points), and the necessity that the point found
above exists. In other words, the system permits adjustment of
only within the range where the three circles in the plane overlap.

Finding is the heart of the pop-up simulator. The other mech-
anisms use either this geometry or simple special-purpose code to
position every plane in the card as it folds and unfolds.

5 Asymmetric Single-Slit Mechanisms

An important variant of the single slit is the asymmetric slit. Here
the fold does not follow the crease of the backing card, but is at
an angle to it. Figure 5 shows the essential geometry; Figure 5a is
the open card and Figure 5b shows it in closed position. In Figure
5a, the central pop-up crease forms an angle to the support
crease . Although in action the card looks generally like Figure
2b, the central pop-up crease is rotated, creating an asymmetrical
pair of triangles on each side. In Figure 5a, we are free to
choose , , and ; we want to find that allows the card to
fold flat. In terms of angles, we have , , and and wish to find .
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Figure�5 (a) (b) (c)
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In Figure 5, we can see that as the card folds, point comes up
out of the plane, and eventually comes down to rest at . This
causes triangle to become reflected, since pulls it
around . Triangle is pulled along by the motion of
, and comes to rest at in an orientation equal to a ro-

tation of around . Because is perpendicular to the folding
axis , point moves to along line ; this means that
triangle is similar to triangle .

To find , we begin with in Figures 5b and 5c, giving
, or .

From in Figure 5a, write . With
the value for found above, this becomes . From

we find that . Combining these last two
results, we find our goal: . Thus,
to construct an asymmetric slit pop-up that folds flat, place in
Figure 5a so that .

6 V-Fold Mechanisms

The V-foldmechanism creates a pair of free-standing slanted planes
when the card is opened, as shown in Figure 6. The V-fold is one
of the hardest pieces to design using paper and scissors, since one
indirectly controls how much the plane leans back by changing the
angle at the base of the piece when it is cut out; this angle is the V
at the bottom of Figure 6a.

Because a V-fold is a separate piece attached to the backing card,
it can rise out of the card plane when the card is fully open, unlike
the single-slit. Thus the geometry of the V-fold is based on that
of the single slit, but allows more flexibility in its design. Though

still locates the central crease, there may be no paper at that
point in space. For example, the apex of the fold (point in Figure
6) need not be included; the shaded “tunnel” region in Figure 6b
can be cut out of the card. Figure 6 also shows the small flaps
which are scored, bent back, and then glued to the support planes.
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Since V-folds don’t cut into the page, they may be placed on
any crease, which is then treated just like the card’s crease for that
mechanism. Figure 6c shows a cascaded pair of V-folds. The larger
one uses the card fold as its support crease, and creates as
one of its side pop-up creases. The smaller V-fold uses as its
support crease. So opening the card pops up the big V-fold, which
then drives the smaller one to pop up as well.

The tabs of a V-fold must be carefully glued in the right places
or the card may not open or close fully. Our system will optionally
print out targets on the support planes to indicate where the tabs
should be attached.

Depending on the placement of the V-fold on the support planes,
it can be designed to fold either towards or away from the reader.
When the planes of the V-fold become parallel to the support
planes, all the folding lines become parallel to one another [7]. This
configuration is sometimes called a floating layer [2].

7 Other Mechanisms

The double-slit mechanism is based on cutting away a piece
of the backing card, and then folding it towards the reader
rather than away. Figure 7 shows an example. The new
fold is placed so that when , the pop-up and
the card all form right angles. In the figure, .

(a) (b)Figure�7
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Layered mechanisms are a variation on the double-slit; rather
than being cut out of the backing card, the pieces are built inde-
pendently and glued in place using tabs. They are still bound by
the same requirement that the angles formed are all when the
card crease is a right angle. Figure 8 shows an example of a layered
mechanism using two pieces; here also .

As with V-folds, it is important to glue these pieces
down in the right place. This usually requires a blend of
measuring, marking, and eyeballing; the targets printed
by the system guarantee that the card will work correctly.
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These techniques can be effectively combined with the construc-
tions discussed earlier. Two of the most useful combinations are
called the strap and the pivot, shown together in Figures 1b and
9. The strap is based on either a double-slit, or a layer glued to its
support planes. Both the double-slit and the layer are right-angle
mechanisms; when the card is fully open these pieces fold down
into the layer of the card. The value of the strap is that it allows the
designer to displace the central card crease to a parallel line.
In Figure 9, the fold of the strap has been combined with a

single-slit mechanism (we don’t actually need to cut this slit
because we’re using the edge of the card). Note that the strap’s
central pop-up crease rises toward the reader; when the single-slit
construction uses this as its support crease, the pyramid created by
the single slit folds away from the reader. By attaching another
piece to one of the planes of the single-slit, that piece will pivot as
the card is opened. Creative designers can create pivot elements
that extend far outside of the card when it’s opened, yet fold down
and tuck away completely out of view when the card is closed.

(a) (b)Figure�9

8 Implementation
We have built a small interactive system for the design of pop-up
cards. The designer may erect new mechanisms over any fold, in-
cluding edges formed by other pop-ups. In this way we can produce
multi-layered designs. The implementation builds a dependency
graph, and follows it from the card fold outward. Due to the physi-
cal nature of pop-up cards, this graph is inherently acyclic.
The designer may create mechanisms, open and close the card,

and interactively drag points around; the rest of the mechanism is
automatically adjusted as necessary. If the designer moves or
, the other point moves symmetrically. Points and may

be moved freely along the central pop-up crease. In both types of
single-slit techniques, point may move along the central pop-up
crease. V-folds are more flexible, and also allow adjustment of
perpendicular to support planes and . Sets of points, up to and
including entire mechanisms, may be moved at once.
This makes it very easy to solve the problem posed in the In-

troduction. To cause a V-fold piece to lean back at a shallower
angle, simply select any point (such as ) on the central crease,
and move it interactively until it looks good.
We track the motion of pieces by representing all planes as tri-

angles; more complex polygons use the triangles as a reference co-
ordinate system. For example, mechanism points , , and

are expressed in barycentric coordinates with respect to the support
planes in which they lie.

Some designs include a horizon on one or more V-folds; this
horizon should appear straight and parallel to the base when the
card is open and viewed along a line parallel to the base. This
requires a slight adjustment to the placement of the texture on the
V-fold, moving the texture along the crease either towards or away
from point . The designer may apply horizon-line correction to
the entire card, or only selected pieces.

A fun application of pop-ups is to use a general-purpose
stereo algorithm to group objects from one or more pho-
tographs into planes. Figure 10 shows a card created
with our system using manual segmentation of a sin-
gle photograph, and the Siggraph logo for a background.

Figure�10
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When the designer is satisfied with the card, the system prints
out pages of templates for all the mechanisms. To build the
pages, we use a greedy packing algorithm. Each page maintains a
rectangle indicating its available area. As long as there are pieces
remaining to pack, we select the largest one, and then look for
the first page with an available rectangle large enough to hold the
piece; if there is no such page then we create a new page. On
the chosen page we place the piece at the top, and compute the
area of the remaining rectangle below. We then place the piece at
the side and find the remaining area. We choose the position that
leaves the most area on the page, and move on to the next-smaller
piece. Figure 11 shows the templates for the card of Figure 10.

4



Preprint

Figure�11

9 Future Work
It would be nice to include collision detection in the design pro-
gram; we currently rely on the designer’s eye to prevent pieces from
hitting one another. We would also like to use a 2D packing algo-
rithm like [8] to minimize wasted paper area. A complete design
system should include the rest of the common pop-up-card mech-
anisms, including discs, straps, and boxes [2]. Although these are
straightforward to design without a computer’s help, it would be
convenient to have all the mechanisms available in one place while
creating a card. The implemention of these other devices would use
a combination of specific special-purpose code and the geometry in
this paper. We would also like to add other design amenities such
as 3D painting directly onto the card.
Some pop-up books use the rigidity of the paper as a mechanical

device to push and rotate other pieces into position; the V-folds
in Figure 1a pull up the curved piece this way. We would like to
investigate such techniques. Other extensions include curved paper
surfaces, curved folds [3], and the use of hardware such as rubber
bands and springs to cause mechanical action. We would like to
see a stable design system made available so people can quickly
and conveniently design their own pop-up cards for themselves and
each other.
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