Two Derivations of the Angular Interpolation Formula

Andrew Glassner Frits Post

Faculty of Mathematics and Informatics
Delft University of Technology
Julianalaan 132
2628 BL Delft
The Netherlands

Technical Memo #87-3 15 December, 1987

Abstract

Given two unit vectors \mathbf{L} and \mathbf{R} , and a scalar α between 0 and 1, we wish to find the vector \mathbf{P} between \mathbf{L} and \mathbf{R} such that $\angle(\mathbf{L},\mathbf{P}) = \alpha\angle(\mathbf{L},\mathbf{R})$ (so as α ranges from 0 to 1, \mathbf{P} interpolates from \mathbf{L} to \mathbf{R} around the unit circle). The solution is the angular interpolation formula $\mathbf{P} = \beta_1 \mathbf{L} + \beta_2 \mathbf{R}$, where $\beta_1 = \sin((1-\alpha)\theta)/\sin\theta$, $\beta_2 = \sin(\alpha\theta)/\sin\theta$, and $\theta = \cos^{-1}(\mathbf{L} \cdot \mathbf{R})$. Angular interpolation has applications including quaternion rotation [Shoemake85] (where the formula is presented without derivation), and circular shading [Glassner87]. The two constructions shown here were developed by the authors simultaneously but independently. We present both derivations (rather than just one), in the spirit of [Heckbert87]: to show two contrasting solutions to a geometric problem.

Notation

Since L, R, and P are all coplanar, we may write P as a linear combination of L and R (assuming L and R are not colinear): $P = \beta_1 L + \beta_2 R$. If L and R are colinear then it is undetermined through which semicircle P should pass, and the interpolation should be broken into two smaller pieces. We label the angle between L and R with θ , and the angle between L and P with ϕ . Thus $\phi = \alpha \theta$.

Derivation 1

In this diagram we have rigidly rotated the vectors L and R so that L lies on the Cartesian X axis. From the diagram, we see that $P = (\cos \varphi, \sin \varphi)$, $R = (\cos \theta, \sin \theta)$, and L = (1, 0). Solving the linear relation first for the y component of P, we find $P_y = \beta_1 L_y + \beta_2 R_y = \beta_2 R_y$. We can rewrite this to obtain $\beta_2 = P_y/R_y$. Solving for the x component, $P_x = \beta_1 L_x + \beta_2 R_x = \beta_1 + \beta_2 R_x$. We rewrite this as $\beta_1 = P_x - \beta_2 R_x$. Substituting the actual co-ordinates of the points gives us

$$\beta_2 = \frac{\sin \varphi}{\sin \theta} \qquad \beta_1 = \cos \varphi - \beta_2 \cos \theta$$

Derivation 2

In the diagram above, P is shown as the sum of $\beta_1 L$ and $\beta_2 R$. Thus OQPS is a parallelogram, in which $|OQ| = \beta_1$, $|OS| = \beta_2$, $|OP| \equiv 1$, and |QP| = |OS|. Note that QP is parallel to OS, and in general will not be tangent to the unit circle. In $\triangle OPQ$, $\angle O=\phi$, $\angle P=\theta-\phi$, and $\angle Q=\pi-\theta$. We can find β_1 and β_2 with the law of sines in $\triangle OPQ$ (recall that $\sin(\pi-\theta)=\sin(\theta)$): $\frac{\sin(\pi-\theta)}{1}=\frac{\sin\theta}{1}=\frac{\sin\phi}{\beta_2}=\frac{\sin(\theta-\phi)}{\beta_1}$. Solving for β_1 and β_2 we have:

$$\beta_1 = \frac{\sin(\theta - \phi)}{\sin\theta} \qquad \beta_2 = \frac{\sin\phi}{\sin\theta}$$

Equivalence and Computation

Of course the two different expressions for β_1 from derivations 1 and 2 must be equivalent. To demonstrate this, recall the trig identity $\sin(\alpha-\beta) = \sin\alpha\cos\beta - \sin\beta\cos\alpha$. Then we can rewrite the first expression as

$$\beta_1 = \cos\varphi - \beta_2\cos\theta = \cos\varphi - \frac{\sin(\theta - \varphi)}{\sin\theta}\cos\theta = \frac{\sin\theta\cos\varphi - \sin\varphi\cos\theta}{\sin\theta} = \frac{\sin(\theta - \varphi)}{\sin\theta}$$

We may efficiently compute β_1 and β_2 using the forms in Derivation 2. Given L, R, and α :

- 1. $\theta = \cos^{-1}(\mathbf{L} \cdot \mathbf{R})$
- 2. φ=αθ
- 3. $f = 1/\sin(\theta)$
- 4. $\beta_1 = f \times \sin(\theta \phi)$
- 5. $\beta_2 = f \times \sin(\varphi)$

References

[Shoemake85] K. Shoemake, "Animating Rotations with Quaternion Curves", Computer Graphics (19)3 (Proceedings of Siggraph '85), July 1985

[Glassner87] A. Glassner, "Rendering Rounder Polygons", in preparation

[Heckbert87] P. Heckbert, "Derivation of Refraction Formulas", Introduction to Ray Tracing course notes, Siggraph '87, July 1987